Чтение онлайн

на главную - закладки

Жанры

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
Шрифт:

Щоб розв’язати без використання GRAN1, перетворюють нерівність. Задача знову звелась до знаходження найбільшого значення функції. Для отримання розв’язків використовують похідну.

Користуючись графічним образом рівняння чи нерівності варто запропонувати дітям самостійно скласти і розв’язати нові задачі. Збільшуючи відрізок, на якому задано функцію, учні можуть відповісти на питання, при яких значеннях параметра остання нерівність не має розв’язків, розв’язки записуються у вигляді одного, двох інтервалів.

Нерівність найкраще розв’язувати графічно з побудовою образу в площині ( х, а). Тому картинка, яку виконаємо від руки, буде такою ж, як і з використанням GRAN1.

Досить часто при розв’язуванні методом перерізів для побудови графіків учням доводиться застосовувати похідну. Труднощі в таких задачах можуть виникнути і при обчисленні

границь функції. Саме тоді в нагоді стає комп’ютер, який вчить учня правильно використовувати властивості функцій.

Застосування програми GRAN1 розширює клас функцій, графіки яких учні можуть побудувати. Варто звернути увагу на особливості побудови графіків цілої частини функції y=[ f( x)] та дробової y={ f( x)} в програмі GRAN1. За цілу частину числа хберуть найбільше ціле число, що не перевищує дане. Дробовою частиною числа називається різниця між числом і цілою частиною. В програмі GRAN1 закладено означення з якого слідує, що цілою частиною від’ємного числа є число, яке може бути більшим заданого числа: в програмі [–1,3]=–1 а правильно –2. Тому графіки вказаних функцій до розв’язування задач з параметрами потрібно використовувати обережно.

Таким чином, застосування програми GRAN1 для розв’язування задач з параметрами сприяє передбаченню розв’язків задач, висуванню гіпотез, дає можливість в багатьох випадках отримати кількість розгалужень, сприяє розвитку логічного мислення, пошуку нестандартних підходів при розв’язування задач. Програму можна застосувати до багатьох задач, що традиційно розв’язуються аналітичним методом.

З іншого боку, застосування програми GRAN1 допомагає вирішувати проблему гуманізації освіти: робить задачі з параметрами більш доступними кожному, хто має хоча б елементарні навички у роботі з комп’ютером, дозволяє дитині досягти успіху, навіть якщо вона й не знає деяких теоретичних положень.

Література:

Жалдак М.І. Комп’ютер на уроках математики: Посібник для вчителів. – К.: Техніка, 1997. – 303 с.

СКІНЧЕННО-РІЗНИЦЕВЕ РОЗВ’ЯЗАННЯ ДВОМІРНОГО

РІВНЯННЯ ШРЕДІНГЕРА Й ФЕНОМЕН КВАНТОВОГО

ХАОСУ: НАУКОВІ ТА МЕТОДИЧНІ АСПЕКТИ

І.В. Кукліна

м. Одеса, Одеський державний екологічний університет

Значна частина задач математичної фізики та обчислю-вальної математики пов’язана з чисельним розв’язанням рівнянь в частинних похідних, які описують різноманітні процеси (класичний та квантовий хаос, дифузійні тощо). При чисельному розв’язанні шуканих рівнянь часто використовуються різницеві схеми [1]. До числа досить складних відноситьтся класс задач, пов’язання з рішенням рівняння Шредінгеру для багаточастин-кових систем з різним птенціалами. Дана робота присвячена розробці нових чисельних моделей в теорії квантово-хаотичних систем у магнітному полі. Вперше розроблено новий квантовий підхід до розрахунку енергій й ширин зеєманівських резонансів у спектрі атому водню й воднєподібних систем у статичному магнітному полі та їх статистичних характеристик у режимі хаосу. Метод базується на скінченно-різницевому розв’язанні двомірного рівняння Шредінгера для атому водню у магнітному полі та операторній теорії збурень. Гамільтоніан системи у магнітному полі з магнітною індуцією Вмає стандартний вигляд:

(1)

Завдяки інваріантності відносно обертання навколо восі, яка проходить через ядро й паралельна полю В, z– компонента орбітального моменту L z =hМє величиною, що зберігається. У циліндричній системі координат (Oz|| В) з врахуванням залежності хвильової функції від куту повороту навколо восі z, рівняння Шредінгеру має вигляд (в атомних одиницях):

(2)

Двомірне рівняння (2) не розв’язується аналітично (член кулонівської взаємодії з не дозволяє розділити змінні), тому в роботі розвинуто нову скінченно-різницеву схему його розв’язання. При різницевому розв’язанні нескінчена область замінювалася прямокутною областю: 0 < <L , 0 <z<L z достатньо

великих розмірів, в якій будується рівномірна сітка з кроками h , h z таким чином, що межі області знаходились на віддалі 1/2 кроку до найближчої лінії вузлів. На зовнішній межі виконувалась умова: Похідні по апроксимувалися (2 m+1) точковими симетричними різницевими схемами, які отримані шляхом диференціювання інтерполяційної формули Лагранжа. Для другої похідної по zвикористана трьохточкова симетрична різницева схема. Власні значення гамільтоніана розраховані на підставі методу зворотних ітерацій. Відповідна система неоднорідних рівнянь розв’язується методом Томаса. З метою збільшення точності розрахунку власних значень використано метод Річардсона экстраполяції розв’язок по кроку сітки h. Власні значення для одного й того ж стану апроксимувалися многочленом від h.

Для розрахунку ширин резонансів у магнітному полі узагальнено метод операторної теорії збурень ОТВ (Glushkov-Ivanov, 1992 [5]). Ширина Г резонанса:

Г/2(3)

з повним гамільтоніаном (2), Eb – функції дискретного спектру, Ec функції станів континуума. Далі розглянуто застосування нового підходу до розрахунку енергетичних та статистичних властивостей спектру резонансів в атомі водню у магнітному полі й з’ясування особливостей та механізму стохастизації у системі. Крім мети апробації нового методу взагалі, ми виконали розрахунки з метою відтворити та докладно пояснити результати експериментів Клеппнера та співр. (Масачусетський технологічний інститут), в яких спостерігався ефект хаосу в атомі водню у магнітному полі з індукцією 6Тл (див. [2–4]). Ми проводили розрахунок енергій та ширин резонансів в атомі водню для декількох інтервалів значень індукції магнітного поля, у тому числі, значення, яке використано в експерименті Клеппнера та співр. Аналізувалися повністю збіжні серії резонансів в інтервалах енергії: [( n–0.5) , ( n–0.3 ] для n=1, 2, 3, 4. Рідбергівські серії резонансів збігаються до границі іонізації Ландау: E ion(n )=(n +1/2) . Густина станів для кожного каналу Ландау, згідно з нашими аналізом, складала ~35 резонансів на см – 1, що погоджується з експериментальними значеннями ~30 резонансов на см – 1, а також даними, які отримані на підставі оцінок в межах моделі комплексних коордінат (МКК; Delande-Dupret, 1995) та адіабатичному наближенні ОТВ (АОТВ: Ambrosov-Glushkov, 1998): ~40 резонансов на см – 1. Середня ширина резонансу, згідно з нашим розрахунком, складає 0.005 см – 1, що також погоджується з експериментальними даними Клеппнера та співр.: 0.004–0.006 см – 1й оцінками в моделях МКК й АОТВ: 0.006–0.007 см – 1. З фізичної точки зору, наявність у спектрі атому водню у магнітному полі багаточислених резонансів з малими та аномально малими ширинами пояснюється в межах квантової теорії хаоса. Їх виникнення обумовлено не схованою симетрією або феноменом локалізації, а має місце внаслідок випадкових інтерференційних явищ й флуктуацій, притаманних взагалі хаотичним системам.

В роботі також вперше розроблено новий квантовий підхід до розрахунку структури й статистичних властивостей енергетичних спектрів некулонових (багатоелектронних) атомних систем у статичному магнітному полі у регулярній й хаотичній областях, який базується на скінченно-різницевому розв’язанні 2D рівняння Шредінгера з некулоновим потенціалом для багатоелектронної атомної системи і ОТВ (2D-ОТВ). Крім того, додатково вперше чисельно реалізовані адіабатичні моделі розрахунку структури рівнів Н-подібних й некулонових атомних систем у полі, які є ефективними лише у граничному випадку (в інших випадках точність не є достатньою, тому більшість розрахунків проведено методом 2D-ОТВ). У випадку багатоелектронної системи рівняння Шредінгера для одноелектронних функцій записуються (у хартрі-фоківському наближенні) у вигляді:

Поделиться:
Популярные книги

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Наследник пепла. Книга II

Дубов Дмитрий
2. Пламя и месть
Фантастика:
фэнтези
5.00
рейтинг книги
Наследник пепла. Книга II

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Отморозки

Земляной Андрей Борисович
Фантастика:
научная фантастика
7.00
рейтинг книги
Отморозки

Инвестиго, из медика в маги

Рэд Илья
1. Инвестиго
Фантастика:
фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Инвестиго, из медика в маги

Хорошая девочка

Кистяева Марина
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Хорошая девочка

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Девочка из прошлого

Тоцка Тала
3. Айдаровы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка из прошлого

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Наследие Маозари 6

Панежин Евгений
6. Наследие Маозари
Фантастика:
попаданцы
постапокалипсис
рпг
фэнтези
эпическая фантастика
5.00
рейтинг книги
Наследие Маозари 6

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3