Чтение онлайн

на главную - закладки

Жанры

Теория смысла Готлоба Фреге

Бирюков Борис Владимирович

Шрифт:

Вторую группу придаточных предложений составляют такие предложения, которые (иногда вместе с частью главного предложения) служат для образования сложных имен предметов. В качестве примера Фреге рассматривает следующее предложение:

(12) «Тот, кто[41] открыл эллиптическую форму планетных орбит, умер в нищете».

Придаточное предложение, входящее в (12), есть имя Кеплера. Слова в нем имеют прямое значение. Придаточные предложения этой группы объединяет то, что в них встречаются так называемые неопределенно указывающие выражения, которые и делают возможным связь между придаточным

и главным предложением. В нашем примере таким выражением является «тот, кто». В математике и математической логике неопределенно указывающим выражениям соответствуют переменные, связанные операторами (например, оператором дескрипции и квантором общности)[42]. Неопределенно указывающие выражения не имеют значения и не выражают никакого законченного смысла.

Придаточные предложения второй группы не выражают завершенных мыслей и не обозначают истины или лжи. Смысл предложения этого вида нельзя выразить в отдельном непридаточном предложении. Применение принципа замены равнозначного на равнозначное к этому предложению означает его замену другим именем того же предмета.

Примером придаточного предложения третьей группы может быть предложение, входящее в состав следующего сложноподчиненного предложения:

(13) «Наполеон, который понял опасность, угрожавшую его правому флангу, сам повел свою гвардию в наступление на позиции неприятелях[43].

В предложениях этого рода слова имеют обычный смысл и обычное значение. Придаточное предложение выражает законченную мысль, а его значением является истина или ложь. Мысль, выражаемая всем сложно-подчиненным предложением, складывается из мысли главного предложения и мысли придаточного предложения. В данном примере две мысли соединены конъюнктивно. Поэтому значение сложного предложения определяется истинностными значениями конъюнктивно соединенных предложений. Поскольку придаточное предложение имеет обычный смысл и обычное значение, его можно заменить предложением, которое имеет то же истинностное значение[44]. Таким образом, к предложениям этого вида принцип замены применяется в своей непосредственной форме.

Сложнее дело обстоит в тех случаях, когда придаточное предложение – благодаря связи с другим предложением – выражает больше, чем взятое само по себе. Иногда в таких случаях слова в придаточном предложении берутся дважды: один раз в прямом, а другой раз в косвенном значении. Так бывает в косвенной речи после таких слов, как «воображать», «лгать» и т. п. Например, в предложении (14) «A лгал, что он видел Б»

выражены две мысли, про которые неверно было бы сказать, что одна из них принадлежит главному, а другая – придаточному предложению. Эти мысли таковы:

а) А утверждал, что он видел Б,

б) А не видел Б.

Выражая первую мысль, слова придаточного предложения имеют косвенное значение, в то время как те же слова, выражая вторую мысль, имеют прямое значение. Поэтому придаточное предложение, входящее в (14), нельзя заменить предложением с тем же истинностным значением.

Указанная замена бывает невозможна иногда и в случаях, когда слова в придаточном предложении берутся только в прямом значении. Именно, это имеет место тогда, когда придаточное предложение, помимо некоторой цельной мысли, выражает еще и часть другой мысли. Так обстоит дело, например, в предложении

(15) «Так как удельный вес льда меньше удельного веса воды, лед плавает в воде».

Мы имеем здесь три мысли:

а) удельный вес льда меньше удельного веса воды,

б) если нечто имеет удельный вес, который меньше удельного веса воды, то оно плавает в воде,

в) лед плавает в воде.

Придаточное предложение, входящее в (15), выражает

не только первую мысль, но и часть второй мысли. Поэтому его нельзя просто заменить другим предложением с тем же истинностным значением, ибо поступив так, мы изменили бы и вторую мысль; изменение же последней могло бы затронуть также определяемое ею истинностное значение, что в свою очередь могло отразиться на истинностном значении всего предложения (15).

Как же следует применять принцип замены равнозначного на равнозначное в сложно-подчиненных предложениях, содержащих придаточные предложения четвертой группы? Сложное предложение следует предварительно подвергнуть логическому анализу, выявив содержащиеся в нем мысли; это означает замену данного предложения другим предложением, совпадающим с ним по смыслу, но в котором все мысли представлены явно

Например, в результате такого анализа предложение (14) принимает вид:

(16) «А утверждал, что он видел Б, и А не видел Б».

Применимость принципа замены равнозначного на равнозначное к предложениям «А утверждал, что он видел Б» и «А не видел Б», рассматриваемым (каждое) в целом, очевидна. Что касается придаточного предложения «он видел Б», то к нему правило замены тоже применимо, но только в той форме, в какой это правило применяется к косвенной речи.

Фреге понимал, что не всякое предложение легко поддается анализу по предложенному им способу. Он писал: «Если мы станем так рассматривать все встречающиеся в языке придаточные предложения, мы вскоре встретим такие, которые не так-то легко разложить по этим полочкам (имеются в виду выделенные Фреге четыре группы придаточных предложений.- Б.Б.). Причина этого, как мне кажется, состоит в том, что эти придаточные предложения имеют отнюдь не такой простой смысл. Кажется, почти всегда мы соединяем с главной мыслью, которую мы выражаем, побочные мысли, которые, хотя они и не выражаются в языке, слушатель, по законам психологии, тоже связывает с нашими словами» [5, стр. 46]. В таких случаях следует точно выяснить, что же именно имел в виду человек, высказавший данное предложение, и только после этого проводить анализ последнего.

***

Математическая логика, по крайней в основной, «классической», ее части, охватывающей обычное двухзначное исчисление высказываний и исчисление предикатов, носит объемный характер. В ней справедлив так называемый принцип объемности, согласно которому два предиката (свойства или отношения) не различаются, если они имеют один и тот же объем. Этот принцип получил четкую формулировку после того, как Фреге ввел в логику представление о предикатах как о логических функциях, т. е. функциях, относящих предметам (двойкам, тройкам и т. д. предметов) рассматриваемой предметной области истинностные значения – истину или ложь[45]. В объемной логике предикат считается заданным, если указан его объем, т. е. в какой-либо форме сообщено, каким предметам (парам, тройкам и т. д. предметов) рассматриваемой предметной области предикат относит «истину». Поэтому оказывается возможным просто отождествить свойства с множествами предметов, а отношения – с множествами пар, множествами троек и т. д. предметов. Свойства и отношения, рассматриваемые таким образом, можно называть свойствами и отношениями в объемном смысле. В математике объемный подход полностью себя оправдывает. Хорошо известно, что средств объемной, теоретико-множественной логики достаточно для обоснования большей части современной математики.

Поделиться:
Популярные книги

Лэрн. На улицах

Кронос Александр
1. Лэрн
Фантастика:
фэнтези
5.40
рейтинг книги
Лэрн. На улицах

Восход. Солнцев. Книга I

Скабер Артемий
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга I

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Крепость над бездной

Лисина Александра
4. Гибрид
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Крепость над бездной

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Отверженный VI: Эльфийский Петербург

Опсокополос Алексис
6. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VI: Эльфийский Петербург

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Аргумент барона Бронина

Ковальчук Олег Валентинович
1. Аргумент барона Бронина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аргумент барона Бронина

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!