Теория струн и скрытые измерения Вселенной
Шрифт:
Согласуется ли предположение Рида о связанности многообразий Калаби-Яу с реальностью? В 1988 году Тристан Хабш и математик Мерилендского университета Пол Грин доказали, что гипотеза Рида применима к примерно 8000 многообразий Калаби-Яу, которые включали большую часть известных на тот момент многообразий. Последующее обобщение этой работы показало, что более чем 470 миллионов конструкций Калаби-Яу, почти все известные трехмерные многообразия, связаны между собой способом Рида.[198]
Конечно, мы не можем утверждать, что гипотеза справедлива во всех случаях, пока мы это не доказали. И более чем через двадцать лет после того, как Рид выдвинул свою гипотезу, ее доказательство представляет большую трудность. Я полагаю, что большая часть проблемы заключается в том, что не-кэлеровы многообразия не слишком понятны с точки зрения математических
Если мы намерены детально изучить многообразия, в связи с которыми возникла сложнейшая головоломка с ландшафтом и сопутствующий ей космологический пазл, то целесообразно установить, действительно ли все многообразия Калаби-Яу связаны между собой. Ключ к ответу на эти вопросы может лежать в новой пограничной области, касающейся не-кэлеровых многообразий. Эти многообразия вызывают интерес не только потому, что они могут пролить свет на многообразия Калаби-Яу, но и потому, что с их помощью может быть предложена компактификация геометрии, необходимая для расчета масс элементарных частиц в Стандартной модели, которую мы упустили из виду, пока физики увлекались стратегиями, опирающимися исключительно на многообразия Калаби-Яу.
Мой коллега Мелани Бекер, физик Техасского аграрно-технического университета, полагает, что не-кэлеров подход может дать ответ. «Получить структуру и массы элементарных частиц, – говорит Бекер, – можно только через компактификацию не-кэлеровых многообразий». Это может оказаться та геометрия, которая приведет нас к обетованной земле Стандартной модели. Чтобы понять точку зрения Бекера, вернемся в начало этой главы. Струнные теоретики ввели потоки, чтобы избавиться от безмассовых скалярных полей и таким образом стабилизировать размер и форму многообразия Калаби-Яу. Но включение этих мощных полей, или потоков, может исказить геометрию самого многообразия, изменив метрику так, что это уже будет не кэлерово многообразие. «Когда вы включаете поток, ваше многообразие становится не-кэлеровым – это совершенно другая игра в мяч, – говорит Бекер. – Проблема заключается в том, что это действительно целый новый раздел математики. Многое из математики, что применяют к многообразиям Калаби-Яу, неприменимо к не-кэлеровым многообразиям».[199] С точки зрения теории струн многообразия, независимо от того, являются они многообразиями Калаби-Яу или не-кэлеровыми, важны возможностью компактификации, то есть редукцией десяти измерений теории струн до четырех измерений нашего мира.
Самый легкий способ разбиения пространства заключается в расщеплении его на четырехмерные и шестимерные компоненты. Это, по сути, подход Калаби-Яу. Мы обычно считаем эти два компонента полностью раздельными и не взаимодействующими между собой. Таким образом, десятимерное пространство-время является декартовым произведением его четырех- и шестимерных частей, и, как мы видим, вы можете визуализировать его с помощью модели Калуцы-Клейна, которую мы обсуждали в первой главе: в этой модели наше бесконечное четырехмерное пространство-время похоже на бесконечно длинную линию, за исключением того, что эта линия имеет толщину – крошечный круг, в котором находится дополнительное измерение. Поэтому все, что мы действительно имеем, так это декартово произведение круга и линии, другими словами – цилиндр. В случае не-кэлерова многообразия четырех- и шестимерные компоненты не являются независимыми.
В результате десятимерное пространство-время получается не прямым, а, скорее, кривым произведением, часто называемым в русскоязычной литературе искривленным произведением, означающим, что эти два подпространства взаимодействуют.
Короче говоря, на расстояния в четырехмерном пространстве-времени, которые постоянно увеличиваются или искривляются, влияет шестимерная часть. Степень расширения или сжатия четырехмерного пространства-времени зависит от коэффициента искажения, и в некоторых моделях искажение представляет собой экспоненциальную функцию.
Обратимся к нашему примеру с цилиндром. Давайте представим шестимерное пространство при помощи круга. Четырехмерная часть представляет
Однако из-за искажения длина отрезка может варьировать в процессе путешествия по кругу. В одной точке она может быть равна 1, в другой 1/2, еще в другой 1 1/2 и т. д. В результате вы получите неровный, волнистый цилиндр, который деформирован искажением. В 1986 году физик Эндрю Строминджер выразил все это через набор уравнений.
Рис. 10.7.Так называемое декартово произведение круга и отрезка линии аналогично присоединению этого же линейного сегмента к каждой единичной точке на круге. В результате получаем цилиндр. Искривленное произведение выглядит по-другому. В этом случае длина линейного сегмента не должна быть постоянным числом; она может варьировать в зависимости от ее положения на круге. Таким образом, в этом случае мы получаем не настоящий цилиндр, а объект, который можно назвать волнистым, иррегулярным цилиндром
Строминджер отмечает, что в более ранней статье 1985 года, написанной им вместе с Канделасом, Горовицом и Виттеном, где представлена первая серьезная попытка компактификации Калаби-Яу, они сделали упрощающее допущение о том, что четырехмерная и шестимерная геометрии являются независимыми. «И мы нашли решения, в которых они являются независимыми, хотя теория струн не требует этого. Годом позже я решил уравнения, которые получаются без этих допущений». Это так называемые уравнения Строминджера, которые касаются ситуации, где включаются потоки, а четырех- и шестимерные пространства взаимодействуют. «Возможность независимого существования обеих геометрий вызывает интерес, потому что из этого положения вытекает несколько действительно важных следствий», – добавляет Строминджер. Самое выдающееся из этих следствий заключается в том, что искажение может объяснить проблему иерархии масс, то есть почему масса бозона Хиггса настолько меньше планковской массы и почему гравитация настолько слабее других сил.
Уравнения Строминджера, которые применяют к не-кэлеровым многообразиям, описывают более широкий класс решений, чем уравнения, приведенные в статье 1985 года, которые применимы только к многообразиям Калаби-Яу. «Чтобы понять способы реализации теории струн в природе, необходимо понять более общие решения, – говорит Строминджер. – Важно понять все решения для теории струн, а пространство Калаби-Яу не содержит их все».[200] Гарвардский физик Ли-Шенг Ценг (мой постдок) сравнивает многообразия Калаби-Яу с окружностью, «которая является самым красивым частным случаем среди всех гладких и замкнутых одномерных кривых». Уравнения Строминджера (иногда называемые системой Строминджера), по его словам, «включают смягчение условия, определяющего многообразия Калаби-Яу, подобно тому, как смягчение условий, определяющих окружность, приводит к условиям, определяющим эллипс». Если у вас есть замкнутая петля из струны фиксированной длины, то существует только одна окружность, которую можно сделать из нее, в то время как вы можете сделать бесчисленное число разных эллипсов, взяв окружность и сжимая или раздвигая ее в разной степени. Из всех кривых, которые вы можете сделать из этой петли, окружность является единственной, которая остается инвариантной к поворотам вокруг центра.
Для того чтобы убедиться, что окружность является частным случаем эллипса, нам необходимо посмотреть на уравнение, которое определяет эллипс в декартовой системе координат (x, y): x 2 /a 2 +y 2 /b 2 =1, где aи b– положительные, действительные числа.