Теория струн и скрытые измерения Вселенной
Шрифт:
Кривая будет являться окружностью только при условии, что a=b. Кроме того, необходимы два параметра аи b, чтобы определить эллипс, и только один параметр (так как а=b), чтобы определить окружность. Это условие делает эллипс несколько более сложной фигурой, чем окружность, как и система Строминджера (не-кэлерова) является более сложной, чем многообразия Калаби-Яу, которые можно описать меньшим числом параметров.
Хотя переход от окружности к эллипсу и от многообразия Калаби-Яу к не-кэлерову многообразию можно считать
Рис. 10.8.Если у вас есть петля фиксированной длины, то вы можете сделать бесконечное число эллипсов, одни более вытянутые, другие – более округлые, но вы можете сделать только одну окружность заданной длины. Другими словами, ослабив свойства, которые определяют окружность, вы можете получить любое число эллипсов. Аналогично многообразие Калаби-Яу, которое имеет кэлерову симметрию, по определению является (как и окружность) более частным случаем, чем не-кэлерово многообразие, которое удовлетворяет менее жестким условиям и охватывает более широкий класс объектов
Система, предложенная Строминджером, отнюдь не сахар, поскольку она состоит из четырех дифференциальных уравнений, которые должны быть решены одновременно, причем каждое из них может быть кошмаром для решения. Эта система состоит из двух эрмитовых уравнений Янга-Миллса, которые предназначены для калибровочных полей (см. девятую главу). Еще одно уравнение гарантирует, что вся геометрия является суперсимметричной, а последнее предназначено для устранения аномалий, что существенно для обеспечения согласованности теории струн.
Как будто и без того задача не оказывается достаточно сложной, так вдобавок каждое из четырех уравнений фактически представляет собой систему уравнений, а не одно уравнение. Каждое из них можно записать как тензорное уравнение, но так как сам тензор содержит много переменных, то можно разделить одно уравнение на отдельные уравнения для компонентов.
По этой же причине известное уравнение Эйнштейна, которое содержит в себе всю общую теорию относительности, фактически представляет собой набор из десяти уравнений поля, описывающих гравитацию как кривизну пространства-времени, вызванную наличием вещества и энергии, несмотря на то что его можно записать как одно тензорное уравнение. При доказательстве гипотезы Калаби решение уравнений Эйнштейна в вакууме сводится к одному уравнению, хотя и довольно впечатляющему. С не-кэлеровыми многообразиями работать тяжелее, чем с многообразиями Калаби-Яу, потому что здесь наблюдается меньшая симметрия и, следовательно, больше переменных, каждая из которых ведет к увеличению числа уравнений, подлежащих решению. Кроме того, на данный момент у нас фактически нет математических инструментов для решения этой проблемы. В случае с Калаби-Яу, мы привлекли алгебраическую геометрию, инструменты которой разрабатывались на протяжении двух предыдущих столетий, что позволило нам справиться с кэлеровыми многообразиями, но не с их не-кэлеровыми коллегами.
Тем не менее я не считаю, что эти два класса
Затем произошел небольшой прорыв. Я и несколько моих коллег обнаружили решения без сингулярностей для пары специальных случаев. В первой статье, которую я завершил в 2004 году вместе с математиком из Стэнфорда Юном Ли (моим бывшим аспирантом), мы доказали, что класс не-кэлеровых многообразий математически возможен. Фактически для каждого известного многообразия Калаби-Яу мы доказали существование целого семейства не-кэлеровых многообразий, которые достаточны похожи по структуре, чтобы входить в одно семейство. Таким образом, впервые существование этих многообразий было подтверждено математически.
Хотя решение уравнений Строминджера является чрезвычайно трудным делом, мы с Ли сделали самое легкое, что можно было сделать в этой области. Мы доказали, что эти уравнения можно решить для частного случая, когда не-кэлерово многообразие очень близко к многообразию Калаби-Яу. Фактически, мы начали с многообразия Калаби-Яу и показали, как его деформировать, чтобы геометрия или метрика уже не были кэлеровыми. Хотя многообразие все еще могло поддерживать метрику Калаби-Яу, его метрика уже была не-кэлеровой, что сделало возможными решения системы Строминджера.
Вероятно, важнее то, что Ли и я обобщили теорему DUY (о которой упоминалось в девятой главе и название которой является аббревиатурой фамилий ее авторов – Дональдсона, Уленбека и Яу), чтобы охватить все не-кэлеровы многообразия. Теорема DUY имеет большое практическое значение, потому что она автоматически берет на себя решения двух из четырех уравнений Строминджера, связанных с эрмитовой теорией Янга-Миллса, и позволяет решить уравнения суперсимметрии и устранения аномалий.
Учитывая, что DUY является инструментальным средством для компактификаций Калаби-Яу (с точки зрения воспроизведения калибровочных полей), мы надеемся, что она также пригодится для не-кэлеровых компактификаций.
Одним из перспективных способов получения не-кэлеровых многообразий, подразумеваемый гипотезой Рида, является применение конифолдного перехода к уже известному многообразию Калаби-Яу. Я недавно рассматривал эту возможность с Юном Ли и Джи-Хианом Фу, бывшим своим гарвардским аспирантом, сейчас работающим в Фуданьском университете в Шанхае. Исходное многообразие, с которого мы начали, предложил Херб Клеменс, один из архитекторов конифолдного перехода, но он обеспечил нас только общей топологией, то есть многообразием без метрики и, следовательно, без геометрии. Фу, Ли и я пытались придать этому многообразию некоторую форму, показав существование метрики, которая будет удовлетворять уравнениям Строминджера.