Чтение онлайн

на главную - закладки

Жанры

Топологии Миров Крапивина
Шрифт:

Теперь проведите по этому тороиду «параллели» (аналогия с глобусом), разделяющие его на пояса-кольца (см. рис.1).

Далее — проведите «меридианы», разрезающие наш тороид на дольки (см. рис.2).

Несложно заметить, что если нанести одновременно и параллели, и меридианы, то наш «глобус»-тороид будет разделён на множество квадратиков. Так вот, каждый из этих квадратиков и есть отображённая на модели отдельно взятая бесконечная двенадцатимерная Вселенная.

Предчувствую, что самые сообразительные читатели уже заметили, что квадратики, расположенные близ

наружного экватора, значительно превосходят в линейных размерах аналогичные, приближённые к центру, точке касания, «внутреннему экватору». Однако на практике это не так, поскольку здесь действует закон нелинейности и подобия. В результате эталон измерения пропорционален степени искажения (масштабирования) объекта, причём эта зависимость прямо пропорциональна, т. е. по мере уменьшения линейных размеров объекта уменьшается и тот, кто этот объект измеряет, и если мир уменьшился втрое — то вместе с ним уменьшились и вы, а когда вы перешли в мир, вдесятеро превосходящий предыдущий — и вы увеличитесь вдесятеро, так что с точки зрения формального восприятия эти миры будут идентичны по размерам.

Несложно догадаться, что количество миров в Кристалле равно M*N, где M — количество параллелей, а N — меридианов. А поскольку число параллелей и число меридианов на Кристалле стремится к бесконечности, то общее число граней стремится к бесконечности в квадрате. Однако — это только описание поверхности нашего тороида. Вглубь же Кристалла уходят такие же, вложенные в него концентрически тороиду вращения. Как несложно заметить, эти тороиды уже не являются самозамкнутыми, т. е. имеют «бубличную дырку». Эти тороиды также делятся параллелями и меридианами на бесконечность в квадрате частей, соответствующих граням на поверхности. Это — так называемые Отражения, т. е. зависимые миры Кристалла. Поскольку количество таких тороидов-отражений, вложенных друг в друга, также стремится к бесконечности, то общее число Граней Кристалла становится равным бесконечности в третьей степени. А теперь остаётся только вспомнить, что у нас рассматривается упрощённая модель, где количество измерений любого произвольно взятого мира было уменьшено вшестеро, чтобы подсчитать подлинное количество Граней и сложность из взаимосвязей и взаимодействий.

Однако вернёмся к нашей упрощённой модели и рассмотрим на ней некоторые существенные моменты Теории Кристалла.

Вы не забыли касательную, проведённую к кругу и ставшую осью симметрии Кристалла? В книгах Владислава Петровича эта линия носит название Генерального Вектора Времени. Она же — Генеральный Меридиан. Хотя вообще-то чаще Генеральным Меридианом принято считать точку самозамыкания тороида-Кристалла, через которую и проходит Генеральный Вектор Времени. Впрочем, к этому мы вернёмся чуть позже, когда введём понятие ещё одного вектора, самого непривычного в этой теории хотя бы потому, что это угловой вектор, а не линейный.

Итак, вновь опустимся до упрощений. Представим наш Кристалл не тороидом, а кольцом, по внутренней стороне которого расположен один мир (по-прежнему двухмерный), а по наружной — второй. Разумеется, в таком виде эти миры не пересекаются, т. е. они параллельны. Вопрос: если разрезать это кольцо поперёк, то на сколько градусов надо развернуть разрезанный фрагмент, чтобы данный мир совпал с соседним, параллельным. Элементарное знание геометрии даёт понять, что разворачивать надо на 180 градусов.

Теперь представим себе «кольцо», треугольное в сечении. В данном случае угол разворота равен всего лишь 120 градусам. При четырёх мирах — 90 градусов, при при шести — 60, и так далее.

Вот этот рассчётный угол и называют Мёбиус-вектором. По определению — Мёбиус-вектор — это угловая величина, на которую надо развернуть систему параллельных миров, чтобы данный мир пересёкся с ближайшим параллельным. При этом поворот может осуществляться как по параллелям, так и по меридианам (у Владислава Петровича и Параллели, и Меридианы называются Меридианами, так что, разбираясь в текстах, следует быть осторожнее и внимательнее. Хотя, с другой стороны, в большинстве случаев в его книгах речь идёт именно о Меридианах, т. е. о переходах в Поясе Подобия).

Несложно догадаться, что при количестве граней, стремящемся к бесконечности, Мёбиус-вектор стремится к нулю. Так что прав был Витька Мохов из «Крика петуха», когда утверждал, что при таких условиях достаточно одного чиха, чтобы грани сомкнулись и удалось совершить Переход, надо только знать, где и как этот чих произвести. От себя добавлю, что не только где и как, но и когда, что для Кристалла (в отличие от Дороги), немаловажно.

Стоит здесь отвлечься от Переходов и ввести два новых термина, один из которых уже упоминался выше. Итак. Возьмём произвольную параллель и соседствующую с ней. Не секрет, что они вырезают из поверхности Кристалла горизонтальный круг, состоящий из N миров. Это — Пояс Подобия. Назван он так потому, что все миры, расположенные в нём, несмотря на все свои различия, имеют общий макропризнак, делающий их подобными друг другу. Например, если это Пояс Подобия Земли, то во всех мирах данного пояса обязательно

будет планета Земля
, несмотря на то, что не на всех этих Землях будет именно гуманоидная, человеческая цивилизация. Будут и Земли с цивилизацией динозавров, «шаров» или птиц, Земли не заселённые вообще и Земли, заселённые существами из чистой энергии (например — термоядерной). Но в любом случае у всех этих миров будет одно общее — сам факт существования Земли (даже если она будет в каком-то из миров носить иное имя, например — Планета).

Теперь возьмём дольку, отсекаемую от Кристалла двумя соседними меридианами. Получается кольцо, проходящее через точку Генерального Меридиана (т. е. центр тороида). Это кольцо, состоящее из M миров, называется Поясом Неподобия,т. к. основой для него является не наличие, а постоянное изменение макропризнаков, т. е., например, если в данном мире Пояса Неподобия Земля есть, то в остальных вы её уже не найдёте, хотя вполне можете встретить людей, обитающих на других планетах (например, на Марсе или на Итане) и ничего не знающих о Земле.

В целом же, говоря о Мирах Кристалла, стоит привести, чуть переделав, цитату из повести Роберта А.Хайнлайна «Звёздный зверь»:

«Вселенная бесконечна, экселенц, поэтому в ней есть всё, что мы только способны себе представить, а также куда более того, чего мы и представить себе не в состоянии».

Так и с Мирами в Кристалле обстоит дело. Так что не удивляйтесь, встретив в реальности что-то, описанное у фантастов: в Кристалле есть место всему!..

После этого нас вполне обоснованно могут спросить, где же в таком случае на Кристалле расположены Амбер и Хаос, дающие своими Отражениями все остальные миры, включая туда и одну из Земель. Была расхожая модель, созданная поклонниками Роджера Желязны, где система Миров представляла собой нечто напоминающее глобус, сфероид, «северный» полюс которого занимал Амбер, а на «Южном» располагался, разумеется, Хаос. Все же остальные миры протянулись от Амбера до Хаоса и линейная мерность их сохранялась, вследствие чего получалось примерно так: Амбер даёт два-три Отражения, те — ещё по два-три каждое, те — ещё и ещё. Таким образом, количество «Отражений» по мере продвижения к экватору увеличивалось. То же самое происходило и со стороны Хаоса. Внутренность сфероида считалась полой.

Учитывая нашу модель Кристалла, несложно предположить, что Амбер и Хаос будут расположены на Генеральном Меридиане, прямо друг над другом, соприкасаясь вплотную, а Отражения будут ветвиться не вширь по Кристаллу, а вглубь него, как и положено Отражениям. При этом, несмотря на абсолютную близость Амбера и Хаоса, они недостижимы для прямого контакта друг с другом, как минус и плюс по Кельвину (согласно теории, минус ноль по Кельвину — это состояние, когда атомы так насыщены энергией, что все их электроны занимают верхний энергетический уровень, в то время, как при плюс нуле все электроны расположены на нижнем энергетическом уровне. В связи с этим становится очевидным, что хоть внешне минус и плюс ноль по Кельвину и сходны, но перейти от плюс нуля к минус нулю охлаждением невозможно, объект надо не охлаждать, а нагревать, сообщая ему энергию, причём требуемая энергия выше, чем бесконечность /бесконечностью считается такая температура, при которой электроны расположены хаотически (но равномерно) по всем энергетическим уровням/). Так же и в Кристалле: знаменитые Желязновские Амбер и Хаос — это верхняя и нижняя половинки одной и той же стремящейся к нулю сферы в центре Кристалла. Причём расположены они практически в одном и том же месте, но подобно нулям по Кельвину — не могут переходить друг в друга, и чтобы попасть из Амбера в Хаос и наоборот — надо пройти весь путь по всем граням Пояса Неподобия. Из этой же теории возникает, почему, попав на Отражения, невозможно отыскать Амбер: любой из поясов Отражений представляет собой тороид с отверстием посередине, вследствие чего на Отражениях Генеральный Меридиан (или Амбер и Хаос, если угодно) существовать не может. Не спорю, сменяя Отражения в произвольном порядке — можно сперва «погрузиться» внутрь этой структуры, а затем успешно «всплыть» в требуемой точке поверхности Кристалла, в том числе — в Амбере или в Хаосе. Но для не владеющих техникой смены Отражений гораздо доступнее путь по поверхности Кристалла, по поясу Неподобия, пересекая одну Параллель за другой, пока не доберётесь к цели. Правда, в таком случае путь может растянуться на долгие годы, ведь прийдётся ждать тех благоприятных моментов, когда Параллели будут открываться. Да и, учитывая несовпадение векторов Времени в проходимых мирах, можно в конце пути явиться, скажем, не в «завтра», а во «вчера». Проще совершить «Прямой Переход», т. е. «провалиться» в трещину между Гранями Кристалла и сразу оказатся в необходимой точке. Но без Лоцмана при этом есть реальный шанс затеряться где-то в бесконечных дебрях Межпространственного Вакуума или застрять между начавшими уже смыкаться Гранями и потерять свою мерность (т. е. часть своих измерений, превратившись из 12-мерного во что-нибудь попроще и попримитивней).Не исключено даже, что вы станете при этом трёхмерным существом (плоский, двухмерный на материальном уровне плюс линейное Время), как Призраки, или даже двухмерным (по одному измерению на Пространство и на Время), как большинство Полтергейстов и Барабашек.

Поделиться:
Популярные книги

Наследник 2

Шимохин Дмитрий
2. Старицкий
Фантастика:
попаданцы
альтернативная история
фэнтези
5.75
рейтинг книги
Наследник 2

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Помещица Бедная Лиза

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Помещица Бедная Лиза

Доктор 4

Афанасьев Семён
4. Доктор
Фантастика:
альтернативная история
5.00
рейтинг книги
Доктор 4

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Страж Кодекса. Книга VII

Романов Илья Николаевич
7. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VII

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Убивать чтобы жить 4

Бор Жорж
4. УЧЖ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 4

Фею не драконить!

Завойчинская Милена
2. Феями не рождаются
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Фею не драконить!

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Завещание Аввакума

Свечин Николай
1. Сыщик Его Величества
Детективы:
исторические детективы
8.82
рейтинг книги
Завещание Аввакума