Творчество в математике. По каким правилам ведутся игры разума
Шрифт:
* * *
Я сомневался, стоит ли рассказать мастерам тораджи о том, что метод «кира-кира» можно применить на окружности. До того как встала задача о построении пятиконечной звезды, мастера использовали свой метод для решения любых других задач, но здесь он оказался бессилен. Я боялся, что если расскажу, как можно расширить используемый метод, то тем самым укажу мастерам на то, что их искусство недостаточно высоко. И все же я решил, что после моих объяснений они поймут, что сами сформулировали новую задачу, неподвластную их методу.
* * *
ИСПОЛЬЗОВАНИЕ НЕОБЫЧНОЙ ТРИГОНОМЕТРИЧЕСКОЙ ФУНКЦИИ
Какую ошибку мы совершаем, когда используем хорду окружности
Следовательно, функция f(x) = sin (х)/х описывает соотношение хорды и стягиваемой ею дуги окружности. Таким образом, мы показали, как можно по-новому использовать эту необычную тригонометрическую функцию, ранее представлявшую интерес главным образом как пример нестандартного вычисления предела. Несмотря на то что при х = 0 эта функция имеет разрыв, предел функции в этой точке существует и равен 1. Существование этого предела доказывается именно путем сравнения дуг и хорд окружности.
* * *
Когда спустя полтора года я вернулся в эту деревню, мастера по-прежнему чертили пятиконечные звезды на глаз. Когда я рассказал им о том, как можно изменить их метод и использовать его для деления окружности на части, они поняли, что я имел в виду, уже по ходу объяснений, и верно предугадали результат. Они приняли предложенный мною метод и стали применять его.
Оригинальное название книги Дэвиса и Херша «Математический опыт» на английском языке звучит как The Mathematical Experience. Английское слово experience имеет более широкое значение, чем слово «опыт» в русском языке. Experience — это одновременно жизненный опыт и переживание, которое вносит вклад в формирование личности. При этом переживание — это психологический, личностный процесс. Таким образом, название книги Дэвиса и Херша можно было бы перевести как «Математическое переживание» — процесс, который, с одной стороны, является личным, с другой — выходит за рамки отдельной среды и культуры. Он не ограничивается исключительно научным миром или, напротив, только повседневной жизнью, может относиться как к теории, так и к практике, к западной культуре и любой другой. Переживания, изложенные в этой главе, отражают математический опыт. Описанные ситуации выходят за рамки отдельной культуры, в них сочетаются наука и повседневная жизнь, психологическое и личное, поэтому их по праву можно назвать математическими переживаниями.
Глава 5
Математика в творчестве
Пока что мы говорили о математическом творчестве. Но давайте посмотрим, как математика используется в областях, которые сегодня являются синонимом творчества вне рамок мира искусства, а именно в дизайне и рекламе.
Нет никаких сомнений относительно того, какую роль играла и продолжает играть геометрия в дизайне. Она неизбежно применяется при создании чего-то материального и осязаемого. С начала XX века чисто геометрические фигуры используются в дизайне самых разных товаров, особенно в дизайне мебели и упаковки. Дизайнеры, обладающие эстетическим вкусом, стремящиеся к абстракции и экономии форм, с помощью геометрических фигур делают свои работы более элегантными.
Используется математика и в мире рекламы. В последние десятилетия растущий интерес к науке вдохновил авторов рекламных кампаний на использование
Математика играет важную роль в дизайне и рекламе по двум причинам. С одной стороны, тот факт, что и дизайнеры, и специалисты по рекламе грамотно используют математические идеи, расширяет область применения этих идей. С другой стороны, когда математические понятия появляются в контекстах, не связанных с миром науки и технологий, они помогают по-новому понять знакомые нам идеи, делая их еще более доступными.
Можно привести множество примеров применения математических идей в сфере дизайна или рекламы. Проанализируем некоторые из них.
Тенденциозное использование пропорций
Непрерывная борьба за аудиторию приводит к тому, что теле- и радиокомпании в своей рекламе преувеличивают свои достижения и преуменьшают результаты конкурентов. Типичным примером является демонстрация графиков для того, чтобы сделать рекламу убедительнее. Чтобы подчеркнуть преимущество телеканала А над телеканалом В по охвату аудитории, обычно используются графики, подобные следующему:
Допустим, что приведенные на графике данные верны, и телеканал А действительно популярнее телеканала В. Тем не менее разница в размерах между столбцами диаграммы значительно преувеличивает это преимущество. Прямоугольник, обозначающий аудиторию канала А, намного больше, чем прямоугольник, обозначающий аудиторию канала В:
А: 29,6 — 27,5 = 2,1;
В: 28,8 — 27,5 = 1,3 => А/В = 2,1/1,3 = 1,615.
В действительности разница между аудиториями каналов составляет восемь десятых процента, поэтому высота одного прямоугольника должна быть менее чем на 2,8 % больше высоты другого. Корректнее было бы изобразить прямоугольники во всю длину:
Если мы будем обрезать эти прямоугольники произвольным образом, то кажущееся соотношение их размеров может увеличиться до бесконечности. Оно будет тем больше, чем ближе к краю прямоугольника В пройдет линия отреза.
Реальную разницу можно очень сильно преувеличить и даже сделать ее сколь угодно большой:
Похожая проблема связана и с графиками, иллюстрирующими колебания курсов валют. Изменение курса валют в течение недели может показаться незначительным или огромным в зависимости от выбранного масштаба вертикальной оси графика: