Чтение онлайн

на главную - закладки

Жанры

У интуиции есть своя логика. Гёдель. Теоремы о неполноте.
Шрифт:

е = е' • е = е • e' = е', следовательно, е = е'.

Любое утверждение, выводимое из аксиом, обязательно будет справедливо во всех моделях, потому что это же самое доказательство воспроизводимо на каждом конкретном примере. Следовательно, в любом примере, выполняющем аксиомы 1 и 2, окажется, что нейтральный элемент операции является единственным. Это происходит, конечно же, в случае суммы (где нет другого нейтрального элемента, кроме 0) и произведения (где единственный нейтральный элемент — 1).

Теперь назовем поглощающим такое число f, что при операциях с ним результат вновь дает f(то есть а • f = f), и рассмотрим утверждение Р "у операции есть поглощающий элемент". Вопрос: можно ли вывести Р из аксиом 1 и 2? Можно ли вывести отрицание Р? Из того факта, что операция коммутативна

и имеет нейтральный элемент, можем ли мы вывести, обладает она поглощающим элементом или нет?

Сверху — аксиомы коммутативной операции с нейтральным элементом. Слева внизу — пример, выполняющий эти аксиомы, но не имеющий поглощающего элемента. Справа внизу — пример, в котором имеется поглощающий элемент. Следовательно, существование или отсутствие поглощающего элемента не может быть выведено из аксиом из верхней части схемы.

Если бы существование поглощающего элемента было доказуемым на основе аксиом, то любая коммутативная операция с нейтральным элементом обладала бы поглощающим элементом. Однако это не так, поскольку у суммы, коммутативной операции с нейтральным элементом, нет поглощающих элементов. Следовательно, утверждение Р недоказуемо на основе аксиом 1 и 2.

А если бы отсутствие поглощающего элемента было доказуемым, то ни одна операция, выполняющая аксиомы 1 и 2, не имела бы поглощающих элементов. Однако у произведения целых чисел он есть, поскольку 0 — поглощающий элемент, так что отрицание Р также недоказуемо на основе аксиом. Существование или отсутствие поглощающего элемента не может быть ни доказано, ни опровергнуто на основе аксиом 1 и 2 (см. схему на этой странице).

Гёдель приводит подобные рассуждения в своей второй статье по теории относительности, чтобы опровергнуть факт, утверждаемый Джеймсом Джинсом, о том, что в рамках теории относительности можно определить понятие абсолютного времени. Гёдель отвечает ему, что поскольку он нашел модели теории, в которых этого понятия не существует, невозможно вывести из уравнений Эйнштейна обязательного существования абсолютного времени.

Вернемся к проблеме Кантора. Способ, которым Гёдель и Коэн доказали, что континуум-гипотеза неразрешима на основе аксиом теории множеств, подобен способу, которым мы воспользовались для доказательства неразрешимости Р относительно аксиом 1 и 2. В статьях 1938 и 1939 годов, а также более детально в книге 1940 года Гёдель демонстрирует модель, выполняющую аксиомы теории множеств, для которой континуум-гипотеза верна. В этой модели нет множеств с промежуточными кардинальными числами между N и R — подобно тому, как мы нашли модель, в которой нет поглощающих элементов. Это доказывает, что СН не может быть опровергнута (если бы ее можно было опровергнуть на основе аксиом, она была бы ложной во всех моделях).

Изменение — это иллюзия видимости, вызванная особенностями нашего восприятия.

Курт Гёдель, 1949 год

В 1963 году Коэн нашел модель аксиом теории множеств, в которой существует множество с промежуточным кардинальным числом между N и К, то есть модель, в которой СН ложна, и таким образом доказал, что СН не может быть доказана на основе аксиом теории множеств.

Но в стандартной модели, которую мы имеем в виду, формулируя аксиомы теории множеств, континуум-гипотеза истинна или ложна? На этот вопрос еще нет ответа. Многие специалисты считают, что надо найти еще одну аксиому, которую будут согласны принять как верную все заинтересованные лица, и она позволит в конце концов доказать или опровергнуть СН в стандартной модели. Общее мнение, основанное на философских аргументах (Гёдель и Коэн его разделяли), состоит в том, что континуум-гипотеза на самом деле ложна.

ГЛАВА 5

Следствия из работы Гёделя

Теоремы Гёделя о неполноте

обозначили поворотную точку в исследованиях, связанных с философией математики. Современные тексты по философии математики обязательно учитывают теоремы Гёделя, анализируют и делают из них выводы, которые часто становятся причиной споров. Изучение следствий из теорем о неполноте едва лишь началось и, возможно, будет длиться еще десятки или сотни лет.

В Принстоне Гёдель нашел спокойный и однообразный социальный климат, идеально подходящий его образу жизни. Однако даже благоприятное окружение не смягчило ни ипохондрию ученого, ни его чудачества. Напротив, с течением времени его странности усилились до такой степени, что в 1941 году директор Института перспективных исследований Франк Эйделотт был вынужден спросить у личного врача Гёделя, существует ли опасность того, что его начинающаяся паранойя станет опасной для него и окружающих. Хотя врач ответил, что такой опасности нет, сам факт возникновения этого вопроса говорит о многом.

Гёделем владел страх болезней, реальных и мнимых. Так, он был убежден, что от отопления и кондиционера исходит плохой воздух, вредный для здоровья. У него был навязчивый страх холода, и нередко в разгар лета ученого видели в пальто, шарфе и перчатках. Как ни парадоксально, этот страх перед болезнями сопровождался полным недоверием к врачам, которое медленно трансформировалось в опасение людей в целом. Его стремление к одиночеству росло, и иногда он проводил долгие периоды, избегая любого контакта с другими, за исключением супруги Адели и двух-трех самых близких друзей.

ФРАНК ЭЙДЕЛОТТ

Франклин Риджвей Эйделотт родился в деревне округа Гибсон (Индиана, США) в 1880 году и изучал английскую литературу в Индианском университете, который окончил в 1911 году. С 1921 по 1940 год он руководил колледжем Свартмор — образовательным учреждением, в котором провел много инновационных реформ. С 1939 по 1947 год был директором Института перспективных исследований в Принстоне, Нью-Джерси. В тот период в нем работало много выдающихся преподавателей, среди них Альберт Эйнштейн, Гёдель и Джон фон Нейман. Эйделотт скончался в 1956 году в Принстоне.

Фотография, сделанная 14 марта 1951 года — в день, когда Эйнштейну исполнилось 72 года.

На снимке рядом с Эйнштейном — Франк Эйделотт и его супруга.

С момента прибытия в США Адель вела грустную и одинокую жизнь, которая в основном заключалась в заботе о муже, однако необходимость такой заботы становилась все сильнее. Вначале Адели помогал Освальд Веблен, первый друг Гёделя в Принстоне, который поспособствовал ему в получении работы в Институте перспективных исследований. Через некоторое время помощь в заботе о Гёделе стал оказывать Альберт Эйнштейн. Их дружба (особенно крепкая после 1942 года) оказала на Гёделя благотворное влияние; прогулки с Эйнштейном были для него, если можно так сказать, терапевтическими, и хотя чудачества не исчезли полностью, они значительно смягчились. Можно понять, что смерть Эйнштейна в 1955 году стала тяжелым ударом для Гёделя и вызвала обострение его ипохондрии и паранойи. Восполнить эту утрату было невозможно, хотя Адели и помогал в ее заботах о супруге еще один его друг, Оскар Моргенштерн.

Кажется ясным, что плодотворность его идей вдохновит на новые работы. Немногим математикам дарован этот вид бессмертия.

Некролог, посвященный Гёделю, в лондонской газете "Таймс"

Психическое расстройство прогрессировало и в середине 1970-х годов превратилось в бред преследования. Гёдель жил с навязчивой идеей, что его хотят отравить. Доверял он только Адели и Моргенштерну и решительно отказывался принимать пищу, если Адель до этого ее не пробовала.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Афганский рубеж 3

Дорин Михаил
3. Рубеж
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Афганский рубеж 3

Твое сердце будет разбито. Книга 1

Джейн Анна
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Твое сердце будет разбито. Книга 1

Вперед в прошлое 10

Ратманов Денис
10. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 10

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Князь Барсов. Том 2

Петров Максим Николаевич
2. РОС. На мягких лапах
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Князь Барсов. Том 2

Огненный князь 3

Машуков Тимур
3. Багряный восход
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Огненный князь 3

Призыватель нулевого ранга. Том 3

Дубов Дмитрий
3. Эпоха Гардара
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Призыватель нулевого ранга. Том 3

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Тринадцатый XII

NikL
12. Видящий смерть
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
7.00
рейтинг книги
Тринадцатый XII