Чтение онлайн

на главную - закладки

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (

), а при степенях меньше 8 — второму (
).

Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.

Сети для инвариантной обработки изображений

Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора

сдвига.

В качестве примера рассмотрим вычисление сдвигового автокоррелятора для черно-белых изображений. Пусть дан двумерный образ S размером p×q=n. Обозначим точки образа как sij. Элементами автокоррелятора Ac(S) будут величины

, где sij=0 при выполнении любого из неравенств i < 1, i > p, j < 1, j > q. Легко проверить, что автокорреляторы любых двух образов, отличающихся только расположением в рамке, совпадают. Отметим, что aij=a– i,-j при всех i,j, и aij=0 при выполнении любого из неравенств i < 1-p, i > p– 1, j < 1-qj > q– 1. Таким образом, можно считать, что размер автокоррелятора равен p×(2q+1).

Автокорреляторная сеть имеет вид

(11)

Сеть (11) позволяет обрабатывать различные визуальные образы, отличающиеся только положением в рамке, как один образ.

Конструирование сетей под задачу

Подводя итоги, можно сказать, что все сети ассоциативной памяти типа (2) можно получить, комбинируя следующие преобразования:

1. Произвольное преобразование. Например, переход к автокорреляторам, позволяющий объединять в один выходной образ все образы, отличающиеся только положением в рамке.

2. Тензорное преобразование, позволяющее сильно увеличить способность сети запоминать и точно воспроизводить эталоны.

3. Переход к ортогональному проектору, снимающий зависимость надежности работы сети от степени коррелированности образов.

Наиболее сложная сеть будет иметь вид:

(12)

где rij– 1 — элементы матрицы, обратной матрице Грама системы векторов {F(xi)}⊗k, F(x) — произвольное преобразование.

Возможно применение и других методов предобработки. Некоторые из них рассмотрены в работах [68, 91, 278]

Численный эксперимент

Работа ортогональных тензорных сетей при наличии помех сравнивалась с возможностями линейных кодов, исправляющих ошибки. Линейным кодом, исправляющим k ошибок, называется линейное подпространство в n-мерном пространстве над GF2, все вектора которого удалены друг от друга не менее чем на 2k+1. Линейный код называется совершенным, если для любого вектора n-мерного пространства существует кодовый вектор, удаленный от данного не более, чем на k. Тензорной сети в качестве эталонов подавались все кодовые векторы избранного для сравнения кода. Численные эксперименты с совершенными кодами показали, что тензорная сеть минимально необходимой валентности правильно декодирует все векторы. Для несовершенных кодов картина оказалась хуже — среди устойчивых образов тензорной сети появились «химеры» — векторы, не принадлежащие множеству эталонов.

Таблица 3. Результаты численного эксперимента. МР — минимальное расстояние между эталонами, ЧЭ — число эталонов

Размерность Число векторов МР ЧЭ Валентность Число химер Число ответов После обработки сетью расстояние до правильного ответа стало
верн. неверн. меньше то же больше
1 10 1024 3 64 3,5 896 128 896 0 856 0
2 7,21 384 640 384 0 348 0
3 10 1024 5 8 3 260 464 560 240 260 60
4 5,15 230 494 530 240 230 60
5 17,21 140 532 492 240 182 70
6 15 32768 7 32 3 15456 17312 15456 0 15465 0
7 5,21 14336 18432 14336 0 14336 0

В

случае n=10, k=1 (см. табл. 3 и 4, строка 1) при валентностях 3 и 5 тензорная сеть работала как единичный оператор — все входные вектора передавались на выход сети без изменений. Однако уже при валентности 7 число химер резко сократилось и сеть правильно декодировала более 60% сигналов. При этом были правильно декодированы все векторы, удаленные от ближайшего эталона на расстояние 2, а часть векторов, удаленных от ближайшего эталона на расстояние 1, остались химерами. В случае n=10, k=2 (см. табл. 3 и 4, строки 3, 4, 5) наблюдалось уменьшение числа химер с ростом валентности, однако часть химер, удаленных от ближайшего эталона на расстояние 2 сохранялась. Сеть правильно декодировала более 50% сигналов. Таким образом при малых размерностях и кодах, далеких от совершенных, тензорная сеть работает довольно плохо. Однако, уже при n=15, k=3 и валентности, большей 3 (см. табл. 3 и 4, строки 6, 7), сеть правильно декодировала все сигналы с тремя ошибками. В большинстве экспериментов число эталонов было больше числа нейронов.

Таблица 4. Результаты численного эксперимента

Число химер, удаленных от ближайшего эталона на: Число неверно распознанных векторов, удаленных от ближайшего эталона на:
1 2 3 4 5 1 2 3 4 5
1 640 256 0 0 0 896 0 0 0 0
2 384 0 0 0 0 384 0 0 0 0
3 0 210 50 0 0 0 210 290 60 0
4 0 180 50 0 0 0 180 290 60 0
5 0 88 50 2 0 0 156 290 60 0
6 0 0 1120 13440 896 0 0 1120 13440 896
7 0 0 0 13440 896 0 0 0 13440 896

Подводя итог можно сказать, что качество работы сети возрастает с ростом размерности пространства и валентности и по эффективности устранения ошибок сеть приближается к коду, гарантированно исправляющему ошибки.

Доказательство теоремы

В данном разделе приведено доказательство теоремы о числе линейно независимых образов в пространстве k-х тензорных степеней эталонов.

При построении тензорных сетей используются тензоры валентности k следующего вида:

Поделиться:
Популярные книги

Эпоха Опустошителя. Том I

Павлов Вел
1. Вечное Ристалище
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эпоха Опустошителя. Том I

Проблема майора Багирова

Майер Кристина
1. Спецназ
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Проблема майора Багирова

Законы Рода. Том 13

Андрей Мельник
13. Граф Берестьев
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 13

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Цвет сверхдержавы - красный. Трилогия

Симонов Сергей
Цвет сверхдержавы - красный
Фантастика:
попаданцы
альтернативная история
8.06
рейтинг книги
Цвет сверхдержавы - красный. Трилогия

Болтливый мертвец

Фрай Макс
7. Лабиринты Ехо
Фантастика:
фэнтези
9.41
рейтинг книги
Болтливый мертвец

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь