Чтение онлайн

на главную - закладки

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

Таким образом, при добавлении нового эталона требуется произвести следующие операции:

1. Вычислить вектор d (m скалярных произведений — mn операций, mnn²).

2. Вычислить вектор b (умножение вектора на матрицу — m² операций).

3. Вычислить b0 (два скалярных произведения — m+n операций).

4. Умножить матрицу на число и добавить тензорное произведение вектора b на себя (2m² операций).

5. Записать Gm+1– 1.

Таким

образом эта процедура требует m+n+mn+3m² операций. Тогда как стандартная схема полного пересчета потребует:

1. Вычислить всю матрицу Грама (nm(m+1)/2 операций).

2. Методом Гаусса привести левую квадратную матрицу к единичному виду (2m³+m²-m операций).

3. Записать Gm+1– 1.

Всего 2m³+m²–m+nm(m+1)/2 операций, что в m раз больше.

Используя ортогональную сеть (6), удалось добиться независимости способности сети к запоминанию и точному воспроизведению эталонов от степени коррелированности эталонов. Так, например, ортогональная сеть смогла правильно воспроизвести все буквы латинского алфавита в написании, приведенном на рис. 1.

Основным ограничением сети (6) является малое число эталонов — число линейно независимых эталонов должно быть меньше размерности системы n.

Тензорные сети

Для увеличения числа линейно независимых эталонов, не приводящих к прозрачности сети, используется прием перехода к тензорным или многочастичным сетям [75, 86, 93, 293].

В тензорных сетях используются тензорные степени векторов. k-ой тензорной степенью вектора x будем называть тензор x⊗k, полученный как тензорное произведение k векторов x.

Поскольку в данной работе тензоры используются только как элементы векторного пространства, далее будем использовать термин вектор вместо тензор. Вектор x⊗k является nk– мерным вектором. Однако пространство L({x⊗k}) имеет размерность, не превышающую величину

, где
— число сочетаний из p по q. Обозначим через {x⊗k} множество k-х тензорных степеней всех возможных образов.

Теорема. При k<n в множестве {x⊗k} линейно независимыми являются

векторов. Доказательство теоремы приведено в последнем разделе данной главы.

Небольшая модернизация треугольника Паскаля, позволяет легко вычислять эту величину. На рис. 2 приведен «тензорный» треугольник Паскаля. При его построении использованы следующие правила:

1. Первая строка содержит двойку, поскольку при n= 2 в множестве X всего два неколлинеарных вектора.

2. При переходе к новой строке, первый элемент получается добавлением единицы к первому элементу предыдущей строки, второй — как сумма первого и второго элементов предыдущей строки, третий — как сумма второго и третьего элементов и т. д. Последний элемент получается удвоением последнего элемента предыдущей строки.

Рис. 2. “Тензорный” треугольник Паскаля

В табл. 1 приведено сравнение трех оценок информационной емкости тензорных сетей для некоторых значений n и k. Первая оценка — nk — заведомо

завышена, вторая —
— дается формулой Эйлера для размерности пространства симметричных тензоров и третья — точное значение.

Таблица 1.

Как легко видеть из таблицы, уточнение при переходе к оценке rn,k является весьма существенным. С другой стороны, предельная информационная емкость тензорной сети (число правильно воспроизводимых образов) может существенно превышать число нейронов, например, для 10 нейронов тензорная сеть валентности 8 имеет предельную информационную емкость 511.

Легко показать, что если множество векторов {xi} не содержит противоположно направленных, то размерность пространства L({x⊗k}) равна числу векторов в множестве {xi}.

Сеть (2) для случая тензорных сетей имеет вид

(9)

а ортогональная тензорная сеть

(10)

где rij– 1 — элемент матрицы Γ– 1({x⊗k}).

Рассмотрим, как изменяется степень коррелированности эталонов при переходе к тензорным сетям (9)

Таким образом, при использовании сетей (9) сильно снижается ограничение на степень коррелированности эталонов. Для эталонов, приведенных на рис. 1, данные о степени коррелированности эталонов для нескольких тензорных степеней приведены в табл. 2.

Таблица 2. Степени коррелированности эталонов, приведенных на рис. 1, для различных тензорных степеней.

Тензорная степень Степень коррелированности Условия
CAB CAC CBC CAB+CAC CAB+CBC CAC+CBC
1 0.74 0.72 0.86 1.46 1.60 1.58
2 0.55 0.52 0.74 1.07 1.29 1.26
3 0.41 0.37 0.64 0.78 1.05 1.01
4 0.30 0.26 0.55 0.56 0.85 0.81
5 0.22 0.19 0.47 0.41 0.69 0.66
6 0.16 0.14 0.40 0.30 0.56 0.54
7 0.12 0.10 0.35 0.22 0.47 0.45
8 0.09 0.07 0.30 0.16 0.39 0.37
Поделиться:
Популярные книги

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Жених из гроба

Сотис Майя
1. Гробокопательница
Фантастика:
юмористическое фэнтези
сказочная фантастика
фэнтези
5.00
рейтинг книги
Жених из гроба

Ищу жену с прицепом

Рам Янка
2. Спасатели
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Ищу жену с прицепом

Гримуар тёмного лорда I

Грехов Тимофей
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Гримуар тёмного лорда I

Заклятие предков

Прозоров Александр Дмитриевич
3. Ведун
Фантастика:
фэнтези
альтернативная история
8.49
рейтинг книги
Заклятие предков

Крепость над бездной

Лисина Александра
4. Гибрид
Фантастика:
боевая фантастика
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Крепость над бездной

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Экспансия: Сотрудничество. Том 5

Белов Артем
5. Планетарный десант
Фантастика:
боевая фантастика
аниме
5.00
рейтинг книги
Экспансия: Сотрудничество. Том 5

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Локки 7. Потомок бога

Решетов Евгений Валерьевич
7. Локки
Фантастика:
аниме
эпическая фантастика
фэнтези
5.00
рейтинг книги
Локки 7. Потомок бога

Черный Маг Императора 4

Герда Александр
4. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 4