Чтение онлайн

на главную - закладки

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

a[l,k] = Сумма по i от 1 до 10 (Сумма по j от 1 до 10 < x[i,j]*x[i+l,j+k] >)

Другими словами, a[l,k] — число точек совпадающих при наложении изображения X на это же, но сдвинутое на вектор (l,k) изображение. Легко заметить, что ненулевыми могут быть только элементы автокоррелятора A с индексами –9<=l,k<=9. Однако a[l,k]=a[-l, –k] Таким образом можно рассматривать только часть коррелятора с индексами –9<=i<=9 и 0<=j<=9. Если Вы задаете размер автокоррелятора m*n, то входными сигналами для сети будут служить элементы a[i,j] при — (n-1)<=i<=(n-1), 0<=j<=m-1.

Автокоррелятор
сдвиг+отражение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует сдвиговый автокоррелятор. Идея вычисления автокоррелятора сдиг+отражение (S) очень проста: Сложим значения, соответствующие симметричным точкам, и будем считать их новыми значениями. s[k,l]=a[k,l]+a[k, –l]. Очевидно, что автокоррелятор S инвариантен относительно сдвига и отражения. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если Вы задали размеры автокоррелятора m*n, то входными сигналами сети будут s[l,k] при 0<=l<=n-1, 0<=k<=m.

Автокоррелятор сдвиг+вращение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует сдвиговый автокоррелятор. Идея вычисления автокоррелятора очень проста: поворачиваем автокоррелятор A на 90 градусов относительно элемента a[0,0] и получаем элемент автокоррелятора R умножением соответствующих элементов — r[p,q]=a[p,q]*a[q, –p]. Очевидно, что автокоррелятор R инвариантен относительно сдвига и поворота на 90 градусов. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если вы задали размеры автокоррелятора m*n, то входными сигналами сети будут s[l,k] при 0<=l<=n-1, 0<=k<=m.

Автокоррелятор сдвиг+вращение+отражение

Все программы, кроме программы Hopfield.

Этот метод предобработки в качестве исходных данных использует автокоррелятор сдвиг+вращение. Идея вычисления автокоррелятора сдвиг+вращение+отражение (C) очень проста: Сложим значения, соответствующие симметричным точкам, и будем считать их новыми значениями. c[k,l]=r[k,l]+r[k, –l]. Очевидно, что автокоррелятор C инвариантен относительно сдвига, вращения и отражения. Кроме того, можно ограничиться только элементами с неотрицательными индексами. Если вы задали размеры автокоррелятора m*n, то входными сигналами сети будут с[l,k] при 0<=l<=n-1, 0<=k<=m.

Параметры нейронной сети

Все программы, кроме программы Hopfield.

Этот пункт меню позволяет Вам изменять структуру нейронной сети. Вы можете изменить такие важнейшие параметры сети, как

Число нейронов в сети

Число срабатываний сети

Характеристика нейронов

Число нейронов в сети

Все программы, кроме программы Hopfield.

Этот пункт меню позволяет Вам изменять число нейронов в сети от 5 до 10. Подробно структура сети и нейрона описана в разделах Нейронная сеть и Нейрон.

Число срабатываний сети

Все

программы, кроме программы Hopfield.

Наиболее широкую известность получили нейронные сети слоистой архитектуры. В таких сетях за время решения примера сигнал только один раз попадает на нейроны каждого слоя. Имитируемая данной программой сеть является полносвязной сетью — каждый нейрон передает сигнал всем другим (в том числе и себе). Однако любую полносвязную сеть можно представить в виде слоистой сети с идентичными слоями. В рамках такого представления число срабатываний сети равно числу слоев нейронной сети, следующих за входным слоем. Число срабатываний сети может изменяться от 1 до 5.

Характеристика нейронов

Программа Sigmoid

В разделе Нейрон описана структура работы нейрона. В функциональном преобразователе нейрона, работающем по формуле F = R / (C+|R|), присутствует величина С, называемая характеристикой нейрона. Этот пункт меню позволяет Вам изменять эту величину от 0.001 до 5.

ПрограммаSinus не имеет параметра Характеристика нейрона

ПрограммаPade

В разделе Нейрон описана структура работы нейрона. В функциональном преобразователе нейрона, работающем по формуле F = N / (C+D) присутствует величина С, называемая характеристикой нейрона. Этот пункт меню позволяет Вам изменять эту величину в пределах от 0.001 до 5.

Параметры контрастирования

Программа Hopfield.

Если Вы посмотрите на синаптическую карту (воспользуйтесь клавишей <CTRL-F8> для перехода в режим Редактирования карты), то заметите, что большая часть синаптических весов мала и одинакова по величине. Процедура контрастирования (вызывается нажатием клавиш <CTRL-F6>) позволяет исключить часть связей из функционирования. Вам предлагается два способа исключения «лишних» связей:

Меньше х.ххх все синаптические веса, меньшие числа х.ххх по абсолютной величине устанавливаются равными 0. Число х.ххх должно лежать в интервале от 0 до 1.
Дальше хх все синаптические веса связей с нейронами, удаленными от данного более чем на хх устанавливаются равными 0. По этому алгоритму обрабатываются последовательно все нейроны. Расстояние определяется как сумма модулей разности индексов двух нейронов (сумма расстояния по горизонтали и по вертикали). Например, расстояние между вторым нейроном пятой строки и шестым нейроном первой строки равно |2–6|+|5–1|=8. Задаваемый Вами радиус контрастирования хх должен принадлежать интервалу от 1 до 18.

Все программы, кроме программы Hopfield.

Это подменю позволяет Вам определить понятие «лишних» и "медленно обучаемых" связей, а также связей подлежащих возвращению в обучаемое состояние, путем задания следующих параметров процедуры Контрастирования:

Норма для исключения

Норма для включения

Количество контрастируемых связей

Поделиться:
Популярные книги

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Газлайтер. Том 14

Володин Григорий Григорьевич
14. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 14

Ермак. Телохранитель

Валериев Игорь
2. Ермак
Фантастика:
альтернативная история
7.00
рейтинг книги
Ермак. Телохранитель

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Сборник коротких эротических рассказов

Коллектив авторов
Любовные романы:
эро литература
love action
7.25
рейтинг книги
Сборник коротких эротических рассказов

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад