Вирусный флигель
Шрифт:
Однако неизвестно ни одной Попытки воспользоваться методом газовой диффузии того же шестифтористого урана через пористую перегородку. И это тем более странно, что еще в самых первых исследованиях изотопов его использовал Астон, а затем усовершенствовал в Германии Густав Герц. Именно метод Герца с огромным успехом применили англичане и американцы для разделения, изотопов урана. Немецкие же физики начисто упустили его из виду.
Летом 1941 года перед немецкими учеными вновь возникла «плутониевая альтернатива».
Это случилось благодаря появлению в лаборатории Арденне, в Лихтерфельде, нового работника. Он пришел к Арденне в начале 1941 года. Это был профессор Фриц Хоутерманс, человек острого ума, обладавший замечательной способностью видеть вещи с неожиданной стороны.
И Арденне не пришлось жалеть об этом. С первых же дней Хоутерманс взялся за очень важные работы. Сперва он провел экономический анализ различных методов разделения изотопов, затем выполнил очень тонкие измерения эффективных сечений различных веществ для медленных нейтронов. Последняя работа была особенно трудной, ибо в Германии не было циклотронов и Хоутермансу при измерениях приходилось полагаться только на весьма маломощные природные источники нейтронов.
Через восемь месяцев после начала работы у Арденне Хоутерманс завершил самое важное из своих исследований. Отчет «К вопросу об инициировании цепной реакции» занимал всего 39 машинописных страниц, но в нем содержался замечательный по своей глубине обзор всего теоретического фундамента немецкого атомного проекта, а также впервые приводились исчерпывающие расчеты цепной реакции на быстрых нейтронах и расчеты значения критической массы урана-235.
Историки атомных исследований и разработок обычно утверждают, что немецкие ученые не предпринимали попыток определить значение критической массы урана-235 и даже не давали себе труда подумать над вопросом о цепных реакциях на быстрых нейтронах. Фактически все обстоит совершенно иначе. Хоутерманс определенно проделал и то, и другое. И даже не один он. Позже, в сентябре 1942 года, в записке, посвященной возможности осуществления цепной реакции на быстрых нейтронах, Зигфрид Флюгге совершенно недвусмысленно указывал на всю важность получения урана-235 для создания урановой бомбы. А Гейзенберг, примерно в то же самое время, говоря о возможности создания урановой бомбы, в ответ на вопрос о ее размерах сказал, что она будет не больше ананаса. А еще через год на одной из лекций Гейзенберг воспользовался диаграммой, на которой изобразил схему процесса на быстрых нейтронах в уране-235. Кроме того, на основе результатов измерений эффективного сечения урана для быстрых нейтронов, проведенных в 1943 году венцами Йентшке и Линтнером, Гейзенберг уточнил теорию критической массы Хоутерманса.
Однако вернемся к отчету Хоутерманса. Его содержание не ограничивалось перечисленными важными положениями. Еще большее внимание Хоутерманс уделил возможности получения нового делящегося элемента, пригодного для создания бомбы, то есть тому, что мы называли «плутониевой альтернативой» урана-235. В сущности, Хоутерманс не открыл ничего нового, а лишь по-иному взглянул на известные уже факты. Еще в феврале 1941 года Вольц и Хаксель экспериментально установили, что уран-238 поглощает нейтроны значительно слабее, чем ожидалось. Они были убеждены в правильности своей интерпретации экспериментов и считали, что необходим пересмотр предположения Вайцзеккера о возможности извлечения делящегося продукта распада урана-239. По мнению Вольца и Хакселя, такое извлечение будет почти невозможным, поскольку этого вещества должно образовываться очень немного.
Хоутерманс отверг подобный ход рассуждений. В существовавших тогда условиях главное внимание следовало уделять вовсе не методам разделения, куда важнее было сосредоточить усилия на поисках такой наиболее эффективной геометрии реактора. Ведь в природном уране урана-238 в 139 раз больше, чем урана-235, и поэтому гораздо выгоднее изыскать способы утилизации распространенного урана-238, а не редкого урана-235. «Каждый нейтрон, который захватывается ура-ном-238, приводит к возникновению ядра элемента нового типа. А оно уже может делиться под воздействием тепловых нейтронов», — писал в отчете Хоутерманс [16] .
16
Точную идентификацию новых делящихся ядер выполнил несколькими месяцами ранее венец Шинтельмейстер. Он показал, что этот расщепляемый элемент почти определенно занимает в периодической таблице место элемента № 94 (ныне плутоний), а не № 93, и может быть извлечена химическими методами из уранового топлива, переработанного в котле в ходе цепной реакции.
Ясная, исчерпывающая работа Хоутерманса явилась как бы итогом и поворотной точкой всего немецкого атомного проекта. Теперь немецким ученым казалось, что они имеют неопровержимые обоснования, для того чтобы дожидаться времен, когда появится достаточное количество тяжелой воды и станет возможным пустить в ход атомный котел.
И хотя об этом никогда не говорилось явно, все сочли, что необходимость в срочном изготовлении установок для получения урана-235 отпала.
Замечательным свойством научного прогресса является его универсальность, всеобщность. Особенно отчетливо проступает это свойство в военные времена, когда мировая наука распадается на отдельные изолированные сообщества и ученые разных стран трудятся разобщенно, ничего не зная о достижениях своих коллег из вражеского лагеря. Параллелизм научного развития ярко проявился на примере научных достижений союзных государств и держав оси в области радиолокации и реактивных двигателей.
Летом 1940 года ученые, разбросанные по университетам Великобритании и Америки, уже успели провести критический анализ нескольких возможных методов разделения изотопов и остановили свой выбор на одном из них. В числе рассмотренных был чрезвычайно дорогостоящий метод электромагнитного разделения, которым пользовался Нир при получении первых ничтожных количеств урана-235; был также метод термодиффузии, метод центрифугирования и, наконец, метод диффузии через пористую перегородку. От метода термодиффузии отказались по тем же причинам, что и немцы: «ввиду отсутствия какого-либо известного науке уранового соединения, применение которого могло бы дать желаемый результат». Из-за дороговизны отказались и от метода, которым пользовался Нир.
Единственным сулившим успех являлся метод диффузии через пористую перегородку — метод Герца. Первыми обратили на него внимание англичане. Единственным пригодным газом и в этом случае оказался все тот же шестифтористый уран. Его требовалось пропускать сквозь пористую мембрану при очень точно подобранном давлении. Молекулы газа с атомами урана-235, будучи более легкими, диффундировали в пористой преграде с большей скоростью, чем молекулы с атомами урана-238. Процесс диффузии следовало повторять много-много раз, прежде чем концентрация урана-235 увеличится до требуемого значения. Поэтому для работы завода, основанного на процессе газовой диффузии в пористой перегородке, требовалось огромное количество электроэнергии, хотя почти вся она должна была затрачиваться на приведение в действие чрезвычайно многочисленного и сложного насосного оборудования.
В декабре 1940 года группа британских ученых, работавшая под руководством ученого-беженца Ф. Симона, закончила проект большого завода, основанного на применении аппаратов Герца и рассчитанного на суточное производство 1 килограмма урана-235 с концентрацией 99 процентов. Под завод понадобилось бы отвести участок земли площадью 16 гектаров, и он должен был потреблять весьма значительную электрическую мощность — 60 тысяч киловатт. В этом же месяце фирма «Ай-си-ай» (Imperial Chemical Industries) подписала контракт на производство первых промышленных количеств шестифтористого урана (в Германии его производство шло уже полным ходом).