Вирусный флигель
Шрифт:
К тому же вплоть до июня 1940 года Германия неограниченно пользовалась результатами ядерных исследований, публиковавшимися в американской научной прессе без всякой цензуры. И, надо сказать, среди этих результатов нашлось много и таких, которые в Германии получить было бы вовсе невозможно. Так, в американском журнале появилось сообщение, что не только уран, но торий и протактиний могут расщепляться; первый — под воздействием и быстрых, и медленных нейтронов, а вторые два — только быстрых. А в марте и апреле 1940 года в журнале «Физикал ревью» были опубликованы сведения, важность которых вообще невозможно переоценить. Благодаря этим публикациям немцам стало известно об экспериментальном доказательстве того, что вероятность расщепления урана-235 медленными нейтронами более высока и что нейтроны определенной энергии весьма охотно захватываются ураном-238, который при этом превращается в уран-239 [13] . 15 июня,
13
Так, в письме от 3 марта Альфред Нир из Университета штата Миннесота и трое физиков из Колумбийского университета сообщали в «Физикал ревью» о выделении с помощью масс-спектрометра небольшого количества чистого урана-235 и о том, что «уран-235 является изотопом, ответственным за деление под действием медленных нейтронов», а 3 апреля те же физики в том же журнале сообщали об аналогичных опытах, но проведенных «со значительно большими количествами разделенных изотопов, полученных тем же самым способом».
Публикация этого письма привела англичан в ужас. И не мудрено, ведь если теория Бора и Уилера была верна — а она подтверждалась всеми американскими опытами, — тогда новый элемент № 94, или плутоний, должен расщепляться подобно урану-235. Это мгновенно поняли некоторые физики, как только прочитали письмо в «Физикал ревью», и вряд ли они могли приветствовать публикацию такого рода в дни, когда Британия уже вела войну с Германией. Сэр Джемс Чедвик потребовал от британских властей послать энергичный протест американцам.
Но до американцев еще не дошло, что происходит в Европе, и, вероятно, даже самые дальновидные из них не могли представить катастрофу, которая разразится в Европе всего через два месяца. Не представляли в те дни американцы и возможностей атомной энергии. Когда британские власти поинтересовались успехами американцев в атомной физике, то получили заверения, что урановые исследования вряд ли могут иметь какое-либо военное значение. В то же время американцам было известно, что немецкие физики ведут урановые исследования; но военный характер этих исследований они объясняли исключительно тем, что немецкие физики намеренно и успешно вводили в заблуждение свое правительство, единственно ради того, чтобы иметь возможность спокойно работать над чисто научными проблемами.
Все же в этом была и доля правды: в ту пору серьезные ученые, хотя и по разным причинам, еще не принимали активного участия в правительственном атомном проекте, целью которого было создание урановой бомбы. Однако направленность их собственных работ была таковой, что рано или поздно эти работы должны были сомкнуться с работами по атомному проекту. И даже скорее рано, чем поздно.
Как уже говорилось, американские научные журналы прочитывались немецкими физиками от корки до корки. Особенно — «Физикал ревью». Одним из самых внимательных читателей журнала был Вайцзеккер. Он не расставался с ним ни в Институте, ни дома; он читал его в метро по пути на работу и на обратном пути, не обращая внимания на пассажиров берлинской подземки, которые удивленно, а иной раз и подозрительно косились на соседа по вагону, читающего технический и к тому же иностранный журнал. В одну из таких поездок (это было в июле месяце, еще до того как в Германии появились июньские номера американских журналов) Вайцзеккеру впервые пришла в голову мысль, что атом урана 238, захвативший нейтрон, претерпит превращение и станет атомом нового элемента, расщепляемого подобно урану-235 нейтронами. Но при этом возникало одно чрезвычайно важное различие: новый элемент должен был химически отличаться от урана, и, следовательно, отделить его от облученного урана даже с помощью химических методов было уже возможно.
Это теоретическое предположение Вайцзеккера оказалось неточным лишь в одном: в те дни он считал, что процесс распада должен завершаться элементом № 93 (теперь он называется нептунием), этому элементу он и приписывал способность к расщеплению и возможность использовать его для создания взрывчатого вещества вместо урана-235. На деле же американские физики и двое физиков из Кембриджа показали, что нептуний, распадаясь, образует еще один элемент — № 94 (ныне плутоний), который был достаточно стабильным и мог использоваться в качестве ядерной взрывчатки. Не знал в ту пору Вайцзеккер и другого: нептуний и плутоний были уже открыты экспериментальным путем. Это удалось
До того как немецкие ученые отчетливо поняли, что сулит им плутониевая альтернатива, они продолжали искать практическое решение задачи получения больших количеств урана-235. Их надежды, как и предвидели Фриш и Пайерлс, были в основном сосредоточены на процессе газовой диффузии, предложенном Клузиусом и Диккелем. С позиций сегодняшнего дня нетрудно осудить немецких ученых за множество ошибок на пути к правильному методу разделения изотопов урана. Однако они не покажутся столь уж грубыми, если вспомнить, что в ту пору еще вообще не умели получать изотопы в сколько-нибудь ощутимых количествах. Исключением являлся лишь тяжелый водород, но и то потому, что между обычным и тяжелым водородом имеется очень большое различие: дейтерий вдвое тяжелее водорода.
В мае 1940 года Хартек и Грот в Гамбурге проводили исследования коррозионного действия особо чистого газообразного шестифтористого урана. В этот газ, нагретый до температуры 100° С, они помещали кусочки стали, некоторых сплавов, чистого никеля. Продержав образец в газе 14 часов, они вынимали его и взвешивали. Стальной образец сильно менялся в весе. Сталь не выдерживала воздействия газа, зато вес никелевого образца оставался прежним. Не изменился он даже после того, как Хартек и Грот повторили опыт при температуре 350° С. Никель оказался самым устойчивым из всех металлов. Но в ту пору именно он считался самым дефицитным, и это в какой-то степени повлияло на всю судьбу уранового проекта в Германии. Результаты испытаний, проведенных Хартеком, были обескураживающими, срочно требовались какие-то новые решения. Тогда военное министерство направило Карлу Клузиусу в Мюнхен письмо, в котором запрашивало его совета относительно возможности замены шестифтористого урана каким-либо другим соединением. Через неделю Клузиус ответил, что единственной возможной заменой, единственным известным соединением урана, которое в данном случае может рассматриваться, является пятихлористый уран. Однако его применение сулит едва ли меньшие, а возможно и большие, трудности, чем применение шестифтористого урана.
Таким образом, в то время считалось, что единственный путь для получения урана-235 есть метод разделения изотопов с применением шестифтористого урана. На заводе «ИГ Фарбениндустри» в Леверкузене, где имелся богатый опыт работы с соединениями фтора, началось сооружение установки для производства больших количеств этого газа.
Однако нашлись в Германии и такие ученые, которые понимали, что метод разделения изотопов в газовой среде очень сложен на практике и к тому же вовсе не единственный. Сам Клузиус, один из его авторов, искал новых путей. Он намеревался разработать такой метод обогащения урана, в котором в качестве рабочих агентов использовались бы жидкие растворы, а не газ. Он предложил военному министерству одно из возможных решений: «Накопленный нами опыт работы с летучими соединениями урана показывает, что подлинного успеха мы можем добиться только в случае, если перейдем к процессу, в котором рабочими агентами являются жидкости». Подобного мнения придерживался и физик из Гейдельберга Флейшман. Почти одновременно с Клузиусом он нашел сходное решение. По предложению Флейшмана, следовало воспользоваться слегка измененным процессом, примененным Юри для выделения изотопа азота; этот процесс, подобно новому процессу Клузиуса, также основывался на законе распределения Нернста, и, по мысли Флейшмана, в нем должны были участвовать два раствора: водный раствор нитрата урана в эфире. Теория показывала, что в эфире концентрация ионов урана-235 должна повышаться, а это, в свою очередь, позволит затем выделять нужный изотоп физическими методами.
Предложения Клузиуса не были голословными, уже с января 1940 года у себя в Мюнхене он начал опытную проверку нового принципа. Ему удалось разделить ионы натрия и лития, и в мае он сообщал об обнадеживающих результатах. Однако, когда он и его сотрудник Майерхаузер попытались этим же способом разделять ионы элементов, имеющих большее сродство (а такими являются редкоземельные элементы), их постигла неудача. Ученым пришлось обратиться к другому, более сложному принципу разделения, принципу «встречного потока».
Новый принцип также подвергся экспериментальной проверке в лаборатории Клузиуса. Здесь на первых порах была установлена металлическая, а затем стеклянная колонна для разделения и начались поиски наиболее подходящей соли урана. В первых опытах, которые успел провести Клузиус, он работал с солями редкоземельных элементов — перхлоратом неодима и перхлоратом иттрия. Опыты определенно указывали на преимущества процесса с использованием жидких растворов и даже на его практическую перспективность.