Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Ясно! Ну, а при чем здесь гипербола?

— История довольно интересная, но немножко длинная. Если, впрочем, тебе охота послушать, можно рассказать. Начнем с того, что возьмем гиперболу, уравнение которой будет:

y = 1/x

Я думаю, что ты уж встречался с ней, и не однажды. Если ее начертить, то получится хорошо известный тебе график обратной пропорциональности. Ясно, что если рас-

— 365 —

сматривать гиперболу как коническое сечение, то мы получим только одну ее ветвь. Подставляя в уравнение данные, начиная с единицы, мы получим табличку. А теперь возьмем часть площади

под гиперболой, которая у нас заштрихована на чертеже, — часть гиперболы, ограниченную двумя ординатами, соответствующими абсциссам «один» и «два», и осью абсцисс. Вот с этим-то небольшим кусочком гиперболы мы начнем колдовать. Как ты полагаешь, удастся ли нам сдвинуть этот гиперболический трапецоид направо, вдоль по абсциссе так, чтобы ордината, соответствующая точке абсциссы «один», попала как раз на то место, где сейчас находится ордината, соответствующая точке абсциссы «три»?

x y
1 1
2 1/2
3 1/3
4 1/4
5 1/5
6 1/6

— Хм… пока не знаю… — протянул Илюша. — Ну, посмотрим!

— Посмотрим! — посмеиваясь, согласился Радикс. — Мы ведь можем изобрести специальный прибор для рассмотрения этой проблемы. Вот он, смотри!

Перед Илюшей немедленно появился большой, немного наклонный стол, вроде витрин в музейных залах. На нем под зеркальным стеклом шли оси координат. Однако на этот раз Радикс почему-то повернул эту систему на девяносто градусов против часовой стрелки, так что теперь ось игреков пошла горизонтально налево, а ось иксов стала вверх вертикально. Между осями проходила ветвь гиперболы, близко подходя наверху к оси иксов.

Когда мальчик пригляделся, он заметил, что это не одно стекло, а два, между которыми имеется зазор шириной в два миллиметра, для которого гипербола и ось абсцисс образуют сплошные продольные стенки. Промежуток между этими двумя стенками был сверху и снизу открыт. Радикс взял тоненькую резиновую перегородочку и вставил ее снизу в зазор против точки на оси абсцисс, отвечающей значению х = 1, и перегородочка стала вплотную в промежуток между осью абсцисс и гиперболой. Затем Радикс взял банку с ртутью и осторожно сверху налил ртути в зазор между гиперболой и осью абсцисс, так что ртуть заполнила промежуток между ними над перегородкой до уровня, отмеченного х = 2 на оси иксов.

— Вот кусочек гиперболической площади, — сказал он. — Так?

— 366 —

Затем Радикс осторожно передвинул резиновую перегородочку от абсциссы «1» до абсциссы «3».

Илюша внимательно посмотрел и увидел, что теперь поверхность ртути оказалась сверху против точки с абсциссой х = 6.

— Понятно? — спросил Радикс.

— Из одного трапецоида вышло три, — задумчиво констатировал мальчик. — Было от одного до двух, а теперь стало от трех до шести. А как это получилось, не знаю,…

Радикс махнул ручонкой, и вся ртуть немедленно исчезла.

Поглядев машинально на банку, Илюша заметил, что количество ртути в банке снова

увеличилось, а сбоку прыгает одна капелька, никак не может попасть обратно в банку.

Вот как Радикс сначала поставил этот чертеж

А потом повернули обратно

— Возьмем, — сказал Радикс, — очень тонкую полоску, толщиной в долю микрона. Если взять еще тоньше, так, пожалуй, и не увидишь. Так ведь и делали математики в старое время, когда свойства бесконечно малых не были еще достаточно хорошо исследованы и обсуждены. В этом роде действовали, например, Архимед, Кеплер и Кавальери. Это было начало возникновения анализа бесконечно малых, и при разрешении некоторых, сравнительно простых вопросов в руках крупных ученых этот несовершенный способ давал серьезные, а для тех времен даже и решающие результаты. Во всяком случае, без

— 367 —

этих первых, робких и грубых попыток интегрировать и дифференцировать с помощью таких, как выражался Кавальерн, «неделимых» полосок вряд ли наука сумела бы создать то, чем стала математика в наше время. Итак, мы берем такую тончайшую полоску как раз против абсциссы с пометкой «один». Впрочем, сказать по совести, мне надоело возиться с перегородкой, и я привык, чтобы ось иксов шла горизонтально. Поэтому я попрошу ртуть теперь уж без подпорок занимать полагающееся ей пространство между двумя вертикальными ординатами гиперболы.

Оси послушно повернулись, а Радикс сердито глянул на банку со ртутью. Бедная капелька, которая никак не могла попасть обратно в банку, опрометью кинулась обратно к стеклянной гиперболе и немедленно растянулась против абсциссы «1» тоненькой-претоненькой блистающей серебряной ниточкой.

— Хороша «неделимая» полоска? — спросил Радикс.

— Да, — отвечал Илюша, — уж поистине «неделимая».

— Допустим! — усмехнулся Радикс. — Пусть на этот раз будет по-твоему. Это, конечно, не совсем по Кавальери… Ну, все равно, не будем уж на этот раз придираться!.. Но представь себе, что я хочу ее переместить к абсциссе с пометкой «три». Поскольку эта полоска имеет некоторую конечную толщину, хоть и очень небольшую, она, чтобы уместиться под гиперболой, должна стать короче, а самое главное — толще.

Так вот: во сколько раз она станет толще?

Поскольку уравнение гиперболы дает для игрека величины, обратные иксу, то ясно, что для абсциссы «один» мы и ординату получаем «один», а для абсциссы «три» мы получаем «одну третью». Опираясь на уравнение гиперболы, я утверждаю, что наша полоска должна, если ее перенести от абсциссы «один» к абсциссе «три», стать толще в три раза, ибо одна треть в три раза меньше единицы. По-моему, иначе быть не может.

Немедленно тончайшая ртутная ниточка сложилась втрое и быстро двинулась направо. Действительно, когда она добралась до абсциссы «три», она стала той длины, какой в этом месте была ордината гиперболы.

— 368 —

— Ясно, — сказал Илюша.

— А далее, — спросил Радикс, — если взять еще одну тончайшую полоску, которая будет стоять рядом с первой, то с ней что будет?

— Я не могу сообразить сразу, как это будет, — отвечал мальчик, — но мне кажется, что если бы мы взяли целый полк тончайших полосок и стали их так перемещать…

Площадь.

— А ведь когда я перемещал целый трапецоид, я именно это и делал! — заметил Радикс.

Поделиться:
Популярные книги

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Искатель 1

Шиленко Сергей
1. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 1

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Чародеи. Пенталогия

Смирнов Андрей Владимирович
Фантастика:
фэнтези
7.95
рейтинг книги
Чародеи. Пенталогия

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор