Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Каждый из этих секторов будет при неограниченном увеличении и все больше и больше напоминать равнобедренный треугольник, основание которого очень мало и почти сливается с дужкой, ограничивающей этот сектор. А сумма их площадей будет ведь все время оставаться равной все той же площади круга, совсем как в нашем первом примере. Однако смысл

— 222 —

всего этого в том, что площадь очень узенького сектора можно со все большей и большей точностью вычислять по формуле для площади треугольника, умножив основание — длину дужки — на половину высоты, то есть на половину радиуса. А если теперь собрать снова все это в одно целое, то достаточно умножить сумму длин всех дужек, то есть 2r, на половину радиуса, и

получится выражение для площади круга — r2. Если ты интересовался не всем кругом, а только каким-нибудь его сектором, ограниченным дугой длиною l, то можно найти площадь такого сектора, умножив l на половину радиуса. Выходит, что ты действительно можешь совершенно точно получить площадь сектора по формуле площади треугольника, принимая длину дуги за основание, а радиус за высоту. Но сектор с большим центральным углом совсем не похож на треугольник, и ты смог прийти к этому результату здесь только потому, что предпринял то самое деление площади, которое казалось сперва совершенно бессмысленным. Разумеется, эти рассуждения мы провели схематично, в общих чертах; если их немного уточнить, то мы могли бы сказать, что площадь круга определяется нами как предел суммы площадей бесконечно возрастающего числа треугольников, боковые стороны которых равны радиусу, а основания равны неограниченно уменьшающейся хорде маленьких секторов. Ну, а теперь уж, — промолвил в заключение Радикс, — можно, пожалуй, сказать, что у нас в этом трудном вопросе в первом приближении все более или менее в порядке…

— В порядке! Ха-ха-ха! — раздалось откуда-то из-под облаков страшное громыхание плюшевого Мишки-великана.

— Хм!.. — грустно заметил Радикс. — Он, кажется, еще сомневается, все ли ты уразумел?

— Н-не знаю… — неуверенно признался Илюша.

— А не попробовать ли нам сначала? — крикнул Мишка.

— Давай попробуем! — робко сказал Илюша.

И снова вдруг сбежались знакомые человечки, составили формулу, опять Мишка стал маленьким и мирно сидел на тулье цилиндра, но справа появилось много человечков-малюток:

— 223 —

S = a1 (qn — 1) / (q — 1) — a1 / (q — 1) = a1 + a2 + a3 + … an

Ну? — вопросительно заявил Мишка.

Мгновенно человечки справа исчезли все, кроме первого, у которого на груди появилась цифра «1». Немедленно в лапке Мишки тоже оказалась единица, а на груди у тощей Суммы появилась та же самая единица.

— Вперед, друзья! — энергично скомандовал Мишка.

Сейчас же вслед за первым человечком появился второй, у которого на груди было число « 1/2 », в лапке Мишки оказалась уже двойка, а на груди у Суммы появилось не «1», а «1 1/2 ». Затем появился третий человечек, имя которого было « 1/4 », и Мишка показал своей лапкой, что это номер третий, а Сумма сложила все три члена, и вышло 1 3/4 . Появился еще новый член прогрессии, его звали «1/8». Мишка засвидетельствовал, что это был четвертый номер, а Сумма заявила, что теперь всего выходит 1 7/8. Все было правильно, как заметил Илюша. Затем человечки стали появляться все дальше и дальше, быстро и равномерно выпрыгивая на сцену и мелькая один за другим. Казалось, будто прямо перед тобой проходит лента кинокартины и все понемножку меняется, точно толчками. А вместе с тем все быстрее мелькали номера у Мишки в лапке и менялось число на груди у Суммы. Но самое интересное заключалось в том, что человечки, что ни дальше, стали появляться все скорей и скорей, и наконец глаз почти перестал замечать эти толчкообразные изменения картины, а просто казалось, что длинная-предлинная вереница членов прогрессии все удлиняется и удлиняется. А дальше уже стало казаться, что просто куда-то очень-очень далеко вправо растет длинненькая тоненькая ниточка,

и уж нельзя было разобрать, что она состоит из человечков, которых делается все больше и больше… Наконец Мишка взмахнул лапкой и сказал: «Всё!»

Сумма с облегчением вздохнула. На груди ее красовалась цифра «2».

Илюша засмеялся.

— А теперь, — сказал он, — обязательно расскажи мне про бочки, про Великого Механика, про яблоки и веретена и вообще…

— Постой, постой! — сказал Радикс. — Не все сразу! Я должен указать еще тебе, наконец, — и прошу это запомнить всерьез и как следует! — что эта картина приближения к пределу не является единственным объяснением явления предела, есть и другие, не менее, а даже более важные. Но она сравнительно проста и для нас с тобой вполне удовлетворительна. А теперь мне нужно задать тебе еще два-три вопросика,

— 224 —

а потом мы пойдем с тобой в гости к двум моим приятелям, которые нас угостят, накормят и напоят чудным кваском. Скажи, пожалуйста: тебе никогда не приходило в голову, для чего применяются в геометрии формулы?

— Чтобы вычислить что-нибудь, ну, например, длину какого-нибудь отрезка или площадь какой-нибудь фигуры…

— Ты говоришь мне о том применении формул в геометрии, с которым тебе до сих пор приходилось иметь дело. Это естественно. Геометрия ведь и родилась из задач по измерению земли, как указывает ее название. Но ведь, кроме размеров фигуры, нас может интересовать и ее форма. Не правда ли?

— Да, конечно.

— А ты никогда не думал, — продолжал его наставник, — нельзя ли с помощью формул определить также вид или форму какой-нибудь линии?

— Не знаю, — ответил Илюша. — Я не совсем понимаю: как это так определить форму? В каком смысле?

— Вот, например, так. Ты, конечно, знаешь, что такое прямая? Попробуй определи мне прямую как геометрическое место.

— Ну, это нетрудно, — отвечал Илюша. — Вот, например, биссектриса. Она прямая, и вместе с тем она есть геометрическое место точек, лежащих внутри данного угла и равноотстоящих от двух его сторон.

— А если рассматривать окружность?

— Окружность есть геометрическое место точек, равноотстоящих от центра, то есть от данной точки.

— Правильно! Но вот ты видишь, что эти два определения дают тебе две линии различной формы. Следовательно, при помощи старинного понятия геометрического места ты можешь определять кривые, различные по форме. Так как на свете очень много кривых линий, а прямая только одна, то мы ее тоже будем причислять к кривым, а потом выясним, как выделить ее из них. Ты узнаешь далее, почему люди так заинтересовались определением именно формы кривых. Но вот еще что: давай нарисуем прямой угол и проведем его биссектрису.

Илюша нарисовал.

— Будем теперь рассматривать этот чертеж как диаграмму, или график. Разделим обе стороны угла на равные промежутки и дадим делениям номера по порядку.

Илюша сделал и это.

— Теперь посмотрим, как расположена относительно сторон угла биссектриса. Когда на горизонтальной стороне мы найдем четвертую точку деления и восстановим из нее пер-

— 225 —

пендикуляр, то он пересечет биссектрису в точке, которая по вертикальной стороне прямого угла соответствует…

— Тоже четвертому делению, — сказал Илюша. — Да ведь так и должно быть, потому что это биссектриса и обе стороны угла расположены симметрично по отношению к биссектрисе. По-моему так!

— Верно, — отвечал Радикс. — Но если так, значит, деления на сторонах угла позволяют нам определить положение точки внутри угла с помощью двух чисел, выражающих расстояния точки от сторон угла. Раз мы это выяснили, то тем самым мы сделали первый шаг к формулам, потому что формулы относятся именно к числам. Эти два числа называются координатами точки. Расстояние от вершины угла до основания перпендикуляра, опущенного на горизонтальную сторону угла, обычно обозначают буквой х и называют абсциссой точки. Горизонтальную сторону угла называют при этом осью иксов, или осью абсцисс. Другую сторону угла называют осью ординат, или осью игреков. Вторую координату точки — ее расстояние от оси абсцисс — обозначают буквой у, называя это число ординатой точки. Ось иксов и ось игреков называют осями координат, а точку их пересечения — началом координат. Очевидно, что для точки, лежащей в начале координат, и х и у равны нулю. Если двигать точку вправо, то значение х будет увеличиваться, а если ты будешь двигаться вверх, то будет расти значение у.

Поделиться:
Популярные книги

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Наука и проклятия

Орлова Анна
Фантастика:
детективная фантастика
5.00
рейтинг книги
Наука и проклятия

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Эволюция мага

Лисина Александра
2. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эволюция мага

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Измена. Право на семью

Арская Арина
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Измена. Право на семью

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Как я строил магическую империю 3

Зубов Константин
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 3