Чтение онлайн

на главную - закладки

Жанры

Война и еще 25 сценариев конца света
Шрифт:

Если это рассуждение верно, то человечество никогда не станет цивилизацией, которая в течение миллиардов лет покорит всю Галактику.

Но не особенно пугающий результат – гибель через 100 000 лет – мы получаем, только пока рассматриваем лишь возраст человечества в годах. Однако для более точного вычисления среднего положения нам надо использовать не продолжительность существования человечества, а учесть тот факт, что плотность населения постоянно росла, и поэтому гораздо вероятнее родиться в период, когда население Земли исчисляется миллиардами, как в XX веке. Для этого надо использовать не дату рождения человека, а его ранг рождения, то есть его как бы порядковый номер в счету родившихся людей.

До настоящего времени на Земле родилось примерно 100

миллиардов людей. Если верно, что я нахожусь примерно в середине общего числа людей, которое когда-либо будет жить на Земле, то в будущем, до человеческого вымирания, родится примерно еще порядка 100 миллиардов людей (точная связь вероятности и ожидаемого числа задается формулой Готта). Однако, учитывая то, что население Земли приближается к 10 миллиардам, искомые следующие 100 миллиардов будут набраны менее чем за тысячу лет. Итак, тот факт, что скорее всего я нахожусь в обычных условиях, означает, что шансы для человечества погибнуть в ближайшую тысячу лет весьма велики – такова наиболее простая формулировка Теоремы о конце света.

Вероятно, большинство читателей начали испытывать глубокое чувство протеста против приведенных выше рассуждений, усмотрев в них множество логических ошибок и издевательств над теорией вероятности. Кто-то уже вспомнил анекдот про шансы встретить динозавра на улице (50 на 50 – или встретишь, или нет). Это естественная реакция. Большинство ученых также приняло данную теорию в штыки. Однако проблема в том, что эта теория не имеет простых опровержений. То есть их существуют десятки, но ни одно из них не имеет общезначимой убедительной силы, и всегда находятся контраргументы.

Впервые данная идея пришла в голову Б. Картеру в начале 80-х годов, одновременно со знаменитым «антропным принципом». Однако он не решился ее опубликовать как слишком смелую. Позже ее опубликовал Дж. Лесли в своей книге «Конец света» и ряде статей. В формулировке Картера – Лесли Теорема о конце света имеет более сложный вид с использованием базовой в теории вероятностей теоремы Байеса, однако окончательный результат получается еще хуже, чем в приведенном упрощенном изложении – то есть вероятность человеческого выживания оказывается еще ниже.

Однако пока Картер колебался, публиковать ли свое открытие, к похожим выводам, но в другой, более простой математической форме пришел Ричард Готт, который опубликовал в авторитетном журнале Nature гипотезу о том, что, зная прошлое время существования объекта, можно дать вероятностную оценку того, сколько времени он еще просуществует – при условии, что я наблюдаю данный процесс в случайный момент времени его существования.

Например, если я возьму случайного человека с улицы, то я могу дать, используя формулу Готта, следующую оценку вероятной продолжительности его будущей жизни: с вероятностью в 50 процентов он умрет в период времени, равный от одной трети до трех его текущих возрастов. Например, если человеку 30 лет, то я могу с уверенностью в 50 процентов утверждать, что он проживет еще от 10 до 90 лет, то есть умрет в возрасте от 40 до 120. Безусловно, это верное, но крайне расплывчатое предсказание. Разумеется, если взять 90-летнего старика или годовалого младенца, то предсказание будет неверным – однако нельзя намеренно выбирать контрпримеры, так как условием применимости формулы Готта является выборка случайного человека.

Точно так же тот факт, что средняя скорость молекул газа в воздухе составляет 500 метров в секунду, не опровергается тем, что некоторые молекулы имеют скорость в 3 километра в секунду, а другие неподвижны – потому что статистические высказывания не опровергаются отдельными примерами.

Действенность своей формулы Ричард Готт затем успешно продемонстрировал, предсказав будущую продолжительность бродвейских шоу только исходя из знания о том, сколько времени каждое из них уже шло, а также время распада радиоактивного

элемента, если неизвестно, какой это элемент.

Кстати, история открытия Готтом своей формулы также весьма интересна. Будучи студентом, он приехал в Берлин и узнал, что Берлинская стена существует уже 7 лет. Он заключил, что его приезд в Берлин и возраст стены являются взаимослучайными событиями, и, воспользовавшись принципом Коперника, предположил, что скорее всего он находится приблизительно в середине времени существования Берлинской стены. Отсюда он сделал оценку, что с вероятностью в 50 процентов стена падет в период от 2,5 до 21 года от того момента. Примерно через двадцать лет стена пала, и Готта удивила точность его предсказания. Тогда он и решился исследовать тему подробнее. Естественно, он применил свою формулу и к оценке времени будущего существования человечества, в результате чего получил рассуждения, аналогичные тем, с которых мы начали эту главу.

Следует обратить внимание на то, что в формулировке Картера – Лесли Теоремы о конце света вычисляется не сама вероятность человеческого вымирания, а поправка к некой известной вероятности глобальной катастрофы, сделанная с учетом того факта, что мы живем до нее.

Рассмотрим, как работает такая поправка на примере. Допустим, у нас есть две с виду одинаковые урны с шариками, в одной из которых лежит 10 шариков, пронумерованных от 1 до 10, а в другой – 1000 таких же шариков, пронумерованных от 1 до 1000. Мне предлагают выдвинуть гипотезу о том, какое количество шариков находится в урне. В этом случае моя ставка будет 50 на 50, так как урны одинаковые. Затем мне разрешают достать один шарик из одной урны. Если это шарик с номером больше 10, то я могу быть на 100 процентов уверен, что это та урна, в которой 1000 шариков. Если же это шарик с номером меньше 10, допустим «7», то он мог принадлежать обеим урнам. Однако шансы достать такой шарик из первой урны – 100 процентов, а из урны с тысячью шариками – только 1 процент. Отсюда я могу заключить, что урна, из которой я достал шарик, это урна с десятью шариками, с вероятностью примерно в 99 процентов. Теорема Байеса описывает данную ситуацию в общем случае, когда нужно «проапгрейдить» исходную вероятность с учетом новых данных.

Допустим, что вместо шариков у нас продолжительность существования земной цивилизации в столетиях. Тогда первой урне в 10 шариков соответствует выживание людей в течение 1000 лет, а второй урне – в течение 100 000. При этом мы знаем, что вероятность каждого из вариантов, исходя из общего теоретического анализа рисков, – 50 процентов (что вполне правдоподобно). Тогда в качестве акта «вынимания шарика» будет принятие к сведению того факта, что мы сейчас находимся в первом тысячелетии технологической цивилизации. Тогда с вероятностью в 99 процентов мы находимся в том русле будущего, которое просуществует только 1000 лет.

Проиллюстрируем это более близким к теме мысленным экспериментом (этот эксперимент известен в англоязычной литературе как «парадокс спящей красавицы»). Допустим, что космонавт отправляется в загерметизированном и лишенном часов космическом корабле в состоянии анабиоза на одну из двух планет. Первая планета обречена прожить 100 лет, а вторая – 1000, после чего каждая из планет взрывается. То, на какую из планет попадет космонавт, определяется броском монеты после его старта и погружения в анабиоз. При этом дата посадки для каждой из планет определяется случайным образом. Итак, когда космонавт совершает посадку и выходит из анабиоза, но еще не открывает люк корабля, он может рассуждать, что поскольку брошена монета, то он с вероятностью 50 на 50 находится на одной из двух планет. Затем он открывает люк и спрашивает у местного жителя, какой сейчас век по местному исчислению. Если сейчас век, больше, чем первый век, то он может быть уверен, что попал на вторую планету, которая живет 1000 лет. Если же местный житель говорит, что сейчас первый век, то космонавт должен сделать поправку к той априорной вероятности в 50 на 50, которую он имел, когда сидел в закрытом корабле.

Поделиться:
Популярные книги

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Товарищ "Чума" 2

lanpirot
2. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 2

Книга пяти колец. Том 4

Зайцев Константин
4. Книга пяти колец
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Книга пяти колец. Том 4

Офицер империи

Земляной Андрей Борисович
2. Страж [Земляной]
Фантастика:
боевая фантастика
попаданцы
альтернативная история
6.50
рейтинг книги
Офицер империи

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Я сделаю это сама

Кальк Салма
1. Магический XVIII век
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Я сделаю это сама

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV