Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Важно осознавать, что вероятности в квантовой физике не похожи на вероятности в Ньютоновой физике или в повседневной жизни. Мы можем понять это, сравнив узоры, созданные непрерывным потоком бакиболов, летящих к экрану, с узором из ямок, оставленных на мишени для игры в дартс дротиками, которыми игроки целились в «яблочко». Если игроки не перебрали пива, то шансы каждого дротика попасть в центр наибольшие, но они уменьшаются, если игрок отдаляется от мишени. Как и в случае с бакиболами, каждый дротик может попасть куда угодно, и через некоторое время на мишени появится узор из ямок, отображающий эту вероятность. В повседневной жизни про данную ситуацию мы могли бы сказать, что дротик имеет определенную вероятность попасть в разные точки; но если мы скажем так, то, в отличие от случая с бакиболами, лишь потому, что не полностью знаем условия в момент броска. Наше описание можно улучшить, если иметь точные сведения

об особенностях того, как игрок бросает дротик: под каким углом, с каким вращением, скоростью и т. д. В принципе тогда мы могли бы с любой необходимой для нас точностью предсказать, куда попадет дротик. Поэтому использование нами вероятностных терминов для описания результатов событий, наблюдаемых в повседневной жизни, отражает не внутреннюю природу процесса, а только недостаток наших знаний о некоторых его аспектах.

В квантовой физике вероятности не таковы. В квантовой физике они отражают фундаментальную неупорядоченность природы. Квантовая модель природы содержит в себе принципы, противоречащие не только нашему повседневному опыту, но и нашему интуитивному пониманию реальности. Те, кто считает данные принципы фантастическими и для кого в них трудно поверить, попали в хорошую компанию, оказавшись вместе с такими великими физиками, как Эйнштейн и даже Фейнман, чье описание квантовой теории мы представим далее. Действительно, Фейнман однажды написал: «Думаю, я могу с уверенностью сказать, что квантовую механику не понимает никго». Но квантовая физика согласуется с наблюдениями. Она всегда выдерживала проверки, а проверяли ее больше, чем любую другую научную теорию.

В 1940-х годах американского физика Ричарда Фейнмана осенила потрясающая догадка относительно разницы между квантовым и Ньютоновым мирами. Фейнман заинтересовался, как появляется интерференционный узор в эксперименте с двухщелевой преградой. Напомним, что узор, который образуется, когда мы стреляем молекулами при обеих открытых щелях, не является суммой узоров, возникающей, если эксперимент провести дважды: открыв первый раз одну из щелей, а второй раз другую. Вместо этого при обеих открытых щелях мы обнаруживаем чередование светлых и темных полос. Темные полосы — это области, куда частицы вообще не попадают. Значит, частицы, которые попали бы в это место, если открыта, скажем, только левая щель, не попадают туда, если открыты обе щели. Похоже, будто в неком месте на пути от источника к экрану частицы получают информацию об обеих щелях. Такое поведение частиц резко отличается от поведения предметов в повседневной жизни, когда мяч пролетел бы через одну из щелей независимо от того, открыта вторая или нет.

Согласно Ньютоновой физике (и согласно тому, как выглядел бы эксперимент, выполненный с футбольными мячами, а не с молекулами), каждая частица следует от источника к экрану по единственному, строго определенному маршруту. Эта картина лишена «объезда», при котором частица на пути к цели могла бы посетить окрестности каждой из щелей. Согласно же квантовой модели, частица считается не имеющей определенного положения в течение времени, пока она находится между начальной и конечной точками. Фейнман понял, что не нужно интерпретировать это так, будто частицы неимеют маршрута при своем перемещении от источника до экрана. Напротив, это может означать, что частицы следуют по всемвозможным траекториям, соединяющим эти точки. Вот это, заявил Фейнман, и отличает квантовую физику от Ньютоновой. Состояние обеих щелей имеет значение, потому что частицы летят не по единственной определенной траектории, а по всем возможным траекториям и делают это одновременно! Звучит как научная фантастика, но это вовсе не фантастика. Фейнман сформулировал математическое выражение (фейнмановскую сумму по историям), отражающее эту идею и воспроизводящее все законы квантовой физики. В теории Фейнмана математическая и физическая картины отличаются от первоначальной формулировки квантовой физики, но предсказания остаются теми же.

Применительно к двухщелевому эксперименту идеи Фейнмана означают, что частицы движутся по траекториям, проходящим только через левую щель или только через правую щель; что частицы, пролетевшие сквозь левую щель, возвращаются через правую, а потом снова пролетают через левую; что по пути домой они посещают ресторан, где подают замечательные креветки с карри, а потом делают несколько оборотов вокруг Юпитера; что траектории частиц могут далее пролегать туда и обратно через всю Вселенную. По мнению Фейнмана, это объясняет, как частица получает информацию о том, которая из двух щелей открыта, — если щель открыта, частица проходит через нее. Когда открыты обе щели, траектории, по которым частица движется сквозь одну щель, могут накладываться на траектории,

по которым она движется сквозь другую щель, что и вызывает интерференцию. Это может показаться безумием, но для задач современной фундаментальной физики (как и для задач этой книги) формулировка Фейнмана оказалась более подходящей, чем первоначальная.

Фейнмановский взгляд на квантовую реальность крайне важен для понимания теорий, которые мы представим далее, поэтому стоит потратить немного времени, чтобы ощутить, как все это работает. Представьте себе простой процесс, в котором частица начинает свой путь в какой-то точке Аи свободно движется. В Ньютоновой модели эта частица будет двигаться по прямой.

Траектории частицы. Фейнмановская формулировка квантовой теории дает картину, объясняющую, почему частицы — такие как бакиболы и электроны, — проходя через двухщелевую преграду, образуют на экране интерференционный узор.

Через некоторое точно определенное время мы обнаружим частицу именно в некоторой точке В,расположенной на этой линии. В фейнмановской модели квантовая частица «пробует» каждую траекторию, соединяющую точки Аи В,собирая для каждой траектории числа, называемые фазой. Фаза отображает местоположение в цикле волны, то есть находится ли волна в положении гребня или впадины либо в каком-то промежуточном состоянии между ними. Математическое выражение, предложенное Фейнманом для расчета этой фазы, показало: если сложить вместе волны по всем траекториям, получится правильная вероятность того, что частица, начав свой путь в точке А,достигнет точки В.

Фазу, которую каждая отдельная траектория вносит в фейнмановскую сумму (а следовательно, в вероятность движения из точки Ав точку В),можно изобразить в виде стрелки, имеющей фиксированную длину, а указывать стрелка может в любом направлении. Чтобы сложить две фазы, вы приставляете стрелку, соответствующую одной фазе, к концу стрелки, соответствующей другой фазе, и получаете новую стрелку, представляющую собой сумму. Чтобы прибавить дополнительные фазы, нужно просто продолжить этот процесс. Заметьте: когда фазы совпадают по направлению, суммарная стрелка может оказаться довольно длинной. Если они указывают в разные стороны, то имеют тенденцию при сложении гасить друг друга, и от стрелки может не остаться почти ничего. Эта идея проиллюстрирована ниже.

Сложение фейнмановских траекторий. Эффекты из-за различных фейнмановских траекторий могут усиливать или ослаблять друг друга точно так же, как это делают волны. Желтые стрелки — складываемые фазы. Голубые — сумма траекторий (от хвоста первой стрелки до острия последней). Ниже стрелки направлены по-разному, поэтому сумма траекторий очень короткая.

Чтобы выполнить требование Фейнмана для расчета вероятности, с которой частица, вылетевшая из точки А,прилетит в точку В,нужно сложить все фазы, или стрелки, относящиеся к каждой траектории, соединяющей точки А и В.Таких траекторий бесконечное множество, что несколько усложняет математические вычисления, тем не менее результат достижим. Некоторые из путей показаны на рисунке ниже.

Теория Фейнмана дает особенно ясное понимание того, каким образом Ньютонова картина мира проистекает из квантовой физики, которая кажется весьма отличающейся от нее. Согласно теории Фейнмана, фазы, связанные с каждой траекторией, зависят от постоянной Планка. Поскольку постоянная Планка очень мала, то, когда вы суммируете вклады от близких друг к другу траекторий, фазы обычно очень сильно различаются, и поэтому их сумма стремится к нулю (см. ил., с. 88).

Траектории от точки Адо точки В.«Классическая» траектория между двумя точками — прямая линия. Фазы траекторий, близких к классической, имеют тенденцию усиливать друг друга, тогда как для фаз удаленных траекторий характерно взаимное ослабление.

Поделиться:
Популярные книги

Право на эшафот

Вонсович Бронислава Антоновна
1. Герцогиня в бегах
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на эшафот

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Печать пожирателя 2

Соломенный Илья
2. Пожиратель
Фантастика:
городское фэнтези
попаданцы
аниме
сказочная фантастика
5.00
рейтинг книги
Печать пожирателя 2

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Имя нам Легион. Том 3

Дорничев Дмитрий
3. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 3

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Сильная. Независимая. Моя

Бигси Анна
5. Учителя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сильная. Независимая. Моя

Фею не драконить!

Завойчинская Милена
2. Феями не рождаются
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Фею не драконить!

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II