Высший замысел
Шрифт:
Но теория также показывает, что существуют определенные траектории, для которых фазы имеют тенденцию выстраиваться в линию, и потому эти траектории предпочтительны, то есть они дают больший вклад в наблюдаемое поведение частицы. Получается, что для больших объектов траектории, очень близкие к траекториям, предсказанным теорией Ньютона, имеют схожие фазы и суммируются друг с другом, давая гораздо больший вклад в итоговую величину. Поэтому единственным назначением, имеющим вероятность гораздо больше нуля, является направление, предсказываемое теорией Ньютона, а это направление имеет вероятность, очень близкую к единице. Следовательно, большие объекты движутся именно так, как им предписывает теория Ньютона.
До сих пор мы обсуждали идеи Фейнмана в контексте эксперимента с двухщелевой преградой. В том эксперименте частицами обстреливалась преграда в виде стенки со щелями, а на расположенном за преградой экране мы могли определять, в какие места они попадают. Говоря в целом, теория Фейнмана позволяет нам предсказать вероятное поведение
Теперь, когда мы разобрались с фейнмановским подходом к квантовой физике, наступило время рассмотреть еще один ключевой квантовый принцип, который нам понадобится позже, а именно: наблюдение за системой должно изменять ее ход. Разве нельзя (как мы это делаем, увидев каплю горчицы на подбородке у начальницы) просто наблюдать, но не вмешиваться? Нельзя! Согласно квантовой физике, вы не можете «просто» наблюдать что-либо. То есть квантовая физика считает, что, наблюдая, вы должны взаимодействовать с наблюдаемым объектом. Например, чтобы рассмотреть объект в обычном смысле, мы направляем на него свет. Если свет упадет на тыкву, он, конечно же, окажет на нее слабое влияние. Но попадание даже тусклого света на крошечную квантовую частицу — то есть попадание в нее фотонов — имеет значительный эффект, и эксперименты показывают, что это влияет на результаты опыта именно так, как описывает квантовая физика.
Предположим, что, как и раньше, мы посылаем поток частиц через двухщелевую преграду и собираем данные о первом миллионе частиц, прошедших сквозь щели. Когда мы графически изобразим множество частиц, попавших в разные точки экрана, то получим интерференционный узор (см. ил., с. 73), а когда мы сложим фазы, соответствующие всем возможным путям от точки А— места старта частицы — до точки В— места ее регистрации на экране, — то обнаружим, что рассчитанная вероятность попадания в разные точки совпадает с этими данными.
Теперь предположим, что мы повторяем эксперимент, на этот раз направляя свет на щели так, чтобы мы знали промежуточный пункт — точку С, — через который прошла частица. (Точка С — это положение либо одной, либо другой щели.) Это называется «информация „который путь“», потому что она говорит нам о том, каким путем каждая частица перемещается из точки Ав точку В— через щель 1 или через щель 2. Поскольку мы знаем, через какую щель прошла каждая частица, то в нашей сумме траектории для этой частицы будут теперь включать только те пути, которые проходят через щель 1, или только те, что проходят через щель 2. Сумма не будет учитывать траектории, проходящие через обе щели. Поскольку Фейнман объяснил интерференционную картину тем, что траектории, проходящие через одну щель, накладываются на траектории, проходящие через другую, то если вы включите свет, чтобы определить, через какую щель проходят частицы, тем самым лишая их другой возможности, вы получите исчезновение интерференционной картины. И действительно, когда проводился эксперимент, включение света изменяло результаты: вместо интерференционного узора, представленного на с. 73, возникала картина, приведенная на с. 72! Более того, мы можем изменять условия эксперимента, используя свет настолько слабый, что не все частицы взаимодействуют с ним. В этом случае мы можем получить информацию «который путь» только для некоторой группы частиц. Если мы затем разделим данные по частицам в соответствии с тем, получена или нет для них информация «который путь», то обнаружим, что данные, относящиеся к группе, для которой нет такой информации, создадут интерференционный узор, а данные, относящиеся к частицам другой группы — для которых есть информация «который путь», — интерференционной картины не дадут.
Это имеет важные последствия для нашего понимания «прошлого». В теории Ньютона прошлое принималось существующим как определенная последовательность событий. Если вы видите, что ваза, купленная вами в прошлом году в Италии, лежит разбитая на полу, а ваш малыш стоит над ней с растерянным видом, вы можете восстановить события, приведшие к этому случаю: маленькие пальчики не удержали вазу, она упала и, ударившись об пол, разлетелась на тысячу осколков. Действительно, имея полную информацию о настоящем, законы Ньютона позволяют воссоздать полную картину прошлого. Это согласуется с нашим интуитивным пониманием того, что у мира — плохо это или хорошо — имеется определяемое прошлое. Возможно, не было никого, кто наблюдал бы нечто в прошлом, тем не менее существование
То, что прошлое не имеет определенности, означает, что наши наблюдения за системой, выполняемые в настоящем, влияют на ее прошлое. Это довольно эффектно демонстрирует эксперимент, который предложил американский физик Джон Уилер (1911–2008), — так называемый эксперимент с отложенным выбором. В общих чертах этот эксперимент напоминает только что рассмотренный нами эксперимент с двухщелевой преградой, в котором вы можете наблюдать траекторию движения частицы, за исключением того, что в эксперименте с отложенным выбором вы откладываете свое решение о том, проводить наблюдение за траекторией или нет, до самого последнего мгновения, предшествующего столкновению частицы с экраном.
Эксперимент с отложенным выбором приводит к данным, идентичным тем, что получаются в случае, когда мы решаем наблюдать (или не наблюдать) для получения информации «который путь», следя за самими щелями. Но при отложенном выборе траектория каждой частицы, то есть ее прошлое, определяется намного позже того, как частица пройдет сквозь щели и предположительно уже «решила», проходить ли ей только через одну щель — что не приведет к интерференции — или через обе — что создаст интерференцию.
Уилер даже рассмотрел космическую версию этого эксперимента, в которой частицами являются фотоны, испускаемые мощными квазарами, находящимися на расстоянии в миллиарды световых лет. Такой свет мог бы разделиться на две траектории и снова сфокусироваться в направлении к Земле так называемым гравитационным линзированием с помощью промежуточной галактики. Хотя подобный эксперимент находится за пределами возможностей нынешних технологий, если бы мы смогли собрать достаточно фотонов от такого света, они должны были бы сложиться в интерференционный узор. Однако если мы установим измеряющее устройство для получения информации «который путь» неподалеку от экрана, интерференционная картина не возникнет. Выбор — двигаться по одной или по двум траекториям — в этом случае был бы сделан миллиарды лет назад, еще до того как образовалась Земля, а возможно, даже и само Солнце. И все же наши наблюдения в лаборатории окажут влияние на этот выбор.
В этой главе мы проиллюстрировали использование квантовой физикой эксперимента с двухщелевой преградой. В следующей главе мы рассмотрим фейнмановскую формулировку квантовой механики на примере всей Вселенной. Мы увидим, что, подобно частице, Вселенная имеет не единственную историю, а все возможные истории, каждую со своей собственной вероятностью, а наши наблюдения ее текущего состояния влияют на ее прошлое и определяют различные истории Вселенной точно так же, как наблюдения за частицами в двухщелевом эксперименте влияют на прошлое частиц. Этот анализ покажет, как в результате Большого взрыва возникли законы природы в нашей Вселенной. Но прежде чем рассматривать, как возникают законы, мы немного поговорим о том, что же такое законы, а также о тех загадках, которые они влекут за собой.
5. Теория всего
Самое непостижимое во Вселенной то, что она постижима.
Вселенная постижима, потому что ею управляют научные законы, то есть ее поведение можно смоделировать. Но каковы эти законы и модели? Первой силой (или фундаментальным взаимодействием в природе), описанной на языке математики, была гравитация. Закон всемирного тяготения Ньютона, опубликованный в 1687 году, гласит, что всякий объект во Вселенной притягивает любой другой объект с силой, пропорциональной его массе. Это произвело огромное впечатление на интеллектуальную среду той эпохи, поскольку впервые показало, что по крайней мере один аспект Вселенной может быть точно смоделирован. Кроме того, данный закон давал математический аппарат, позволяющий сделать это. Мысль, что существуют законы природы, породила проблемы, подобные тем, за которые около пятидесяти лет до этого Галилей был обвинен в ереси. Например, в Библии повествуется о том, как Иисус Навин умолил Бога остановить движение солнца и луны, чтобы продлить светлое время, и тем самым дать ему возможность завершить битву с амореями в Ханаане. Согласно книге Иисуса Навина, солнце остановилось почти на сутки. Сегодня мы знаем, что это означает остановку вращения Земли. Но если бы Земля остановилась, то, согласно законам Ньютона, все, не закрепленное на ней, продолжило бы движение с прежней скоростью (1100 миль в час на экваторе), — это была бы высокая цена за отложенный закат. Но Ньютона все это не волновало, поскольку, как мы упоминали, он считал, что Бог может вмешиваться и вмешивается в работу Вселенной.