Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих и но одному от четырех соседних атомов. Здесь уже невозможно различить, какой из валентных электронов в атоме «свой», а какой «чужой», поскольку они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу.

Схему взаимосвязи атомов в полупроводнике можно для наглядности упростить, изобразив ее так, как это сделано на рис. 72, б. Здесь ядра атомов с внутренними электронными оболочками показаны в виде кружков со знаком плюс, а межатомные связи — двумя линиями, символизирующими валентные электроны.

Рис. 72. Схема взаимосвязи

атомов в кристалле полупроводника (а) и упрощенная схема его структуры (б)

ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКА

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Но при повышении температуры связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 72, б — черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 72, б — разорвавшаяся линия электрона). Чем выше температура полупроводника, тем больше в нем появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному заряду электрона.

А теперь рассмотри рис. 73.

Рис. 73. Схема движения электронов и дырок в полупроводнике

На нем схематично изображено явление возникновения тока в полупроводнике. Причиной возникновения тока служит напряжение, приложенное к полупроводнику (на рис. 73 источник напряжения символизируют знаки «+» и «—»). Вследствие тепловых явлений во всей массе полупроводника высвобождается из межатомных связей некоторое количество электронов (на рис. 73 они обозначены точками со стрелками). Электроны, освобождавшиеся вблизи положительного полюса источника напряжения, притягиваются этим полюсом и уходят из массы полупроводника, оставляя после себя дырки. Электроны, ушедшие из межатомных связей на некотором удалении от положительного полюса, тоже притягиваются им и движутся в его сторону. Но, встретив на своем пути дырки, электроны как бы «впрыгивают» в них (рис. 73, а), происходит заполнение некоторых межатомных связей. А ближние к отрицательному полюсу дырки заполняются другими электронами, вырвавшимися из атомов, расположенных еще ближе к отрицательному полюсу (рис. 73, б). Пока в полупроводнике действует электрическое поле, этот процесс продолжается: нарушаются одни межатомные связи — из них уходят валентные электроны, возникают дырки — и заполняются другие межатомные связи — в дырки «впрыгивают» электроны, освободившиеся из каких-то других межатомных связей (рис. 73, б-г).

Рассматривая эти схемы, ты, конечно, заметил: электроны движутся в направлении от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному. Это явление можно сравнить с такой хорошо знакомой тебе картиной. Слоит пионерский отряд. Несколько ребят вышло из строя: образовались пустые места — дырки. Вожатый подает команду: «Сомкнуть строй!». Ребята по очереди перемещаются вправо, заполняя пустые места. Что получается? Ребята один за другим перемещаются к правому флангу, а пустые места — в сторону левого.

При температуре выше абсолютного нуля в полупроводнике непрерывно возникают и исчезают свободные электроны и дырки даже тогда, когда нет внешних электрических полей. Но электроны и дырки движутся хаотически в разные стороны и не уходят за пределы полупроводника. В чистом полупроводнике число высвободившихся в каждый момент времени электронов равно числу образующихся при этом дырок. Общее же их число при комнатной температуре относительно невелико. Поэтому электропроводность такого полупроводника, называемая собственной, мала. Иными словами, такой полупроводник оказывает электрическому току довольно большое сопротивление. Но если в чистый полупроводник добавить даже ничтожное количество примеси в виде атомов других элементов, электропроводность его резко повысится. При этом в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.

Чем различаются эти два вида электропроводности полупроводника?

Если какой-либо атом в кристалле полупроводника заменить атомом сурьмы, имеющим во внешнем слое электронной оболочки пять валентных электронов, этот атом-«пришелец» четырьмя электронами свяжется с четырьмя соседними атомами полупроводника. Пятый же валентный электрон атома сурьмы окажется «лишним» и станет свободным. Чем больше

в полупроводник будет введено атомов сурьмы, тем больше в его массе окажется свободных электронов. Следовательно, полупроводник с примесью сурьмы приближается по своим свойствам к металлу: для того чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи. Полупроводники, обладающие такими свойствами, называют полупроводниками с электропроводностью типа n или, короче, полупроводниками n типа. Здесь латинская буква n — начальная буква латинского слова “negativ” (негатив), что значит «отрицательный». Этот термин в данном случае нужно понимать в том смысле, что в полупроводнике типа n основными носителями тока являются отрицательные заряды, т. е. электроны.

Совсем иная картина получится, если в полупроводник ввести атомы с тремя валентными электронами, например атомы индия. Каждый атом металла индия своими тремя электронами заполнит связи только с тремя соседними атомами полупроводника, а для заполнения связи с четвертым атомом у него не хватает одного электрона. Образуется дырка. Она, конечно, может заполниться каким-либо электроном, вырвавшимся из валентной связи с другими атомами полупроводника. Однако независимо от того, где будут дырки, в массе полупроводника с примесью индия не будет хватать электронов для их заполнения. И чем больше будет введено в полупроводник примесных атомов индия, тем больше в нем образуется дырок.

Чтобы в гаком полупроводнике электроны могли перемещаться, совершенно обязательно должны разрушаться валентные связи между атомами. Вырвавшиеся из них электроны или же электроны, поступившие в полупроводник извне, движутся от дырки к дырке. А во всей массе полупроводника в любой момент времени число дырок будет больше общего числа свободных электронов. Полупроводники, обладающие таким свойством, называют полупроводниками с дырочной электропроводностью или полупроводниками типа р. Латинская буква р — первая буква латинского слова “positiv” (позитив), что значит «положительный». Этот термин в данном случае нужно понимать в том смысле, что явление электрического тока в массе полупроводника типа р сопровождается непрерывным возникновением и исчезновением положительных зарядов — дырок. Перемещаясь в массе полупроводника, дырки как бы являются носителями тока.

Полупроводники типа р, так же как и полупроводники типа n, обладают во много раз лучшей электропроводностью по сравнению с чистыми полупроводниками.

Надо сказать, что практически не существует как совершенно чистых полупроводников, так и полупроводников с абсолютной электропроводностью типов n и р. В полупроводнике с примесью индия обязательно есть небольшое количество атомов некоторых других элементов, придающих ему электронную проводимость, а в полупроводнике с примесью сурьмы есть атомы элементов, создающих в нем дырочную электропроводность. Например, в полупроводнике, имеющем в целом электропроводность типа n, есть дырки, которые могут заполняться свободными электронами примесных атомов сурьмы. Вследствие этого электропроводность полупроводника несколько ухудшится, но в целом он сохранит электронную проводимость. Аналогичное явление будет наблюдаться и в том случае, если в полупроводник с дырочным характером электропроводности попадут свободные электроны. Поэтому полупроводниками типа n принято считать такие полупроводники, в которых основными носителями тока являются электроны (преобладает электронная электропроводность), а к полупроводникам типа р– полупроводники, в которых основными носителями тока являются дырки (преобладает дырочная электропроводность).

Теперь, когда ты имеешь некоторое представление о явлениях, происходящих в полупроводниках, тебе нетрудно будет понять принцип действия полупроводниковых приборов. Начнем с предшественников транзистора — полупроводниковых диодов.

ДИОДЫ И ИХ ПРИМЕНЕНИЕ

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми тебе в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая типа n. На рис. 74, а дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т. е. положительным электродом, является область типа р, а катодом, т. е. отрицательным электродом, — область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода.

Поделиться:
Популярные книги

Советник 2

Шмаков Алексей Семенович
7. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Советник 2

Метатель. Книга 2

Тарасов Ник
2. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель. Книга 2

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Отец моего жениха

Салах Алайна
Любовные романы:
современные любовные романы
7.79
рейтинг книги
Отец моего жениха

Хроники Темных Времен (6 романов в одном томе)

Пейвер Мишель
Хроники темных времен
Фантастика:
фэнтези
8.12
рейтинг книги
Хроники Темных Времен (6 романов в одном томе)

Черный Маг Императора 12

Герда Александр
12. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 12

Локки 4 Потомок бога

Решетов Евгений Валерьевич
4. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Локки 4 Потомок бога

Меч Предназначения

Сапковский Анджей
2. Ведьмак
Фантастика:
фэнтези
9.35
рейтинг книги
Меч Предназначения

Купец III ранга

Вяч Павел
3. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец III ранга

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Хроники странного королевства. Двойной след (Дилогия)

Панкеева Оксана Петровна
79. В одном томе
Фантастика:
фэнтези
9.29
рейтинг книги
Хроники странного королевства. Двойной след (Дилогия)

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9