Юный техник, 2006 № 04
Шрифт:
«СОЛНЕЧНЫЙ» ДОМ
Отопление дома стоит немалых денег. Между тем необходимая для этого энергия буквально падает с неба. Дом, круглый год получающий тепло только от солнца, разработал Максим Привалихин из школы № 19 г. Красноярска. В начале своей работы Максим сообщает нам интересные факты. Несмотря на то, что продолжительность светового дня летом больше, чем зимой, длительность возможного освещения солнцем окна, выходящего на юг, зимой больше, чем летом. Более того, оказывается, например,
Но в средней полосе России за счет солнца можно сэкономить много энергии. Здесь все зависит от погоды. Не так уж много в России солнечных дней в году, и чередуются они в случайном порядке. Как показали исследования Института высоких температур РАН, в наших краях с марта по сентябрь, как минимум в половине всего этого времени, солнце может нагревать воздух в специальных панелях до 37 °C, а пятую часть этого времени составят дни, когда температура воды достигнет 55 °C.
Энергии солнечных лучей, падающих на крышу обычного дома, вполне достаточно, чтобы полностью обеспечить его теплом. Нужно лишь научиться ее в солнечные дни запасать и достаточно долго хранить, чтобы пользоваться ей в пасмурные дни и зимой.
Максим изучил многие из известных систем солнечного обогрева домов и пришел к выводу: они несовершенны. Вот, например, наиболее распространенная система Хотелла и Воертса. На крыше расположены солнечные коллекторы. Как правило, это застекленные плоские ящики с зачерненным дном. Внутри ящика проходят трубы, по которым протекает вода. Солнечный свет проникает через стекло, поглощается дном и превращается в инфракрасное излучение, энергия которого уже не может выйти через стекло наружу и нагревает трубы с водой. Горячая вода перекачивается насосами в расположенный в подвале бак. Из него затем берется вода для отопления дома ночью и в те дни, когда солнце скрыто облаками.
Солнечные коллекторы не так уж дороги, но бак тpeбуется очень большой. Его стенки приходится окружать хорошей тепловой изоляцией, иначе все тепло воды уйдет в землю. В результате система получается слишком дорогой.
Стремясь удешевить солнечное теплоснабжение, делают один большой водяной бак на несколько домов. Тогда в расчете на литр горячей воды стоимость материалов и работ снижается. Бывают в этом деле и инженерные находки. Так, в Швеции для хранения 100 тысяч тонн нагреваемой солнцем воды использовали скальные каверны. Этого оказалось достаточно, чтобы отапливать целый город и зимой, и летом. Отопление получилось очень дешевым, но скальные каверны имеются далеко не везде.
Максим Привалихин предлагает способ, позволяющий систему солнечного отопления домов упростить и удешевить. Для этого трубы с водой нужно заменить так называемыми тепловыми трубами, а передаваемое по ним солнечное тепло тратить не на нагревание воды, а на расплавление соли, которая при затвердевании будет отдавать его потребителю. Рассмотрим эти предложения по порядку.
Тепловая труба это труба, наполненная пористой массой, попросту говоря, фитилем. Она герметически закрыта с обоих концов, а фитиль пропитан
Благодаря такому устройству тепловая труба длиной один метр с поперечным сечением 1 см 2имеет теплопроводность в тысячу раз больше, чем медный стержень таких же размеров.
Максим Привалихин предлагает один конец тепловой трубы вывести на крышу и соединить с солнечным коллектором, а другой провести в подвал для плавления соли в хранилище тепла. Тепловой трубе не нужны насосы и не требуется никакого обслуживания, и это делает предложение Максима очень привлекательным. Однако в качестве жидкости для тепловой трубы он предлагает аммиак, нагреваемый солнцем до 100 °C. К сожалению, при такой температуре аммиак вообще не может превратиться в жидкость, и тепловая труба работать не будет.
Если в тепловой трубе поднять давление до 20 атм, аммиак смог бы конденсироваться при температуре 50 °C, и устройство могло бы работать. Нужно помнить только, что аммиак горюч и ядовит. (Вспомните нашатырный спирт!) Жить в доме с тепловыми трубами, наполненными аммиаком, было бы опасно. Очевидно, следует подобрать другую жидкость нетоксичную, негорючую и кипящую при температурах 50 — 100 °C. На эту роль сегодня можно предложить лишь фреон, который, хотя и безвреден для человека, опасен для окружающей среды.
Теперь о второй части предложения Максима Привалихина — применении расплавленной соли. Бак для хранения одного и того же количества тепла в расплавленной соли будет гораздо меньше, нем водяной, и при этом резко уменьшатся потери тепла. Однако соль, способная плавиться при температуре 50 — 100 °C, пока не известна. Вполне возможно, что такие соли есть. Среди них придется выбрать химически наиболее стойкую и к тому же не разъедающую стенки бака. Одним словом, предложения Максима Привалихина заслуживают внимания, но для претворения их в жизнь нужны исследования.
БЕЗОПАСНАЯ БРИТВА ДЛЯ ЛЬДА И СНЕГА
Проблема очистки дворов и улиц от льда и снега заинтересовала Владимира Петрушкина из г. Лесосибирска Красноярского края. В наши дни для уборки заснеженных улиц применяют трактора и специальные автомобили, но, как указывает Владимир, узкие проходы во дворах, тропинки, ведущие к домам и крылечкам, для них недоступны. Эти места, часто покрытые льдом и смерзшимся снегом, приходится чистить вручную. Прочность смерзшегося снега и особенно льда порой приближаются к прочности бетона. Между тем инструмент для дворников по традиции делают из самых дешевых и недостаточно прочных материалов. В результате он очень быстро тупится, и работа с ним становится еще трудней.
Владимир предлагает особый скребок, предназначенный для удаления смерзшегося снега и льда. За образец он взял бритву со сменными лезвиями и предложил конструкцию, состоящую из хорошо заточенной пластины, которая крепится винтами к специальному держателю на рукоятке. Легко и быстро меняя лезвия, рабочий постоянно имеет в руках острый инструмент. Держатель представляет собою сварную коробку из листовой стали, в которой имеется пара сквозных отверстий с резьбой. Соответствующие отверстия имеются и на пластинах. Они вставляются в щель держателя и крепятся винтами.