Чтение онлайн

на главную - закладки

Жанры

Зеркальный мир
Шрифт:

Возьмем бельевую веревку и бросим ее в возможно большем беспорядке на пол. Затем, сунув руку в эту кучу, схватим веревку в любом месте, без разбора, и потянем. Образуется петля, и одновременно начнет затягиваться узел. В конце концов он становится настолько тугим, что веревка перестает из него тянуться. Тогда нужно найти любой свободный конец веревки и потянуть за него. Вероятно, нам удастся освободить несколько метров. И на этом - все. Узел «защемил» веревку. Пока все еще вполне понятно (кроме, пожалуй, одного: к чему вообще здесь об этом говорится?). Но в дальнейшем встает задача развязать затянувшийся узел, для чего существуют разные способы. Всякий «салага» станет пытаться продеть свободный конец сквозь первые петли, которые он зажимает. Опыт показывает, что, раз начав применять такой метод, приходится уже

бесконечно снова и снова продергивать сквозь петли конец веревки, который становится все длиннее.

Иначе поступит моряк (а также читатель этой книги, если он еще не забыл, о чем говорилось в разделе «Чарли Чаплин и морской узел»). Поскольку при «изготовлении» узла свободный конец веревки ни разу ни через одну петлю не продевался, петли могли возникнуть только вследствие перекручивания веревки; иными словами, речь здесь идет об однократных перехлестываниях. Проще всего поэтому несколько растеребить спутанный узел и потянуть за свободный конец до отказа, снова растормошить узел, снова потянуть и т. д. Поначалу просто диву даешься, как это подобный моток веревки удается распутать, не прибегая к пропусканию свободного конца сквозь петли. Внимательный человек заметит еще и то, что подчас после очередного распутывания узел отпускает лишь короткий кусок веревки, но потом из клубка вновь без труда вытягиваются многие метры. Очевидно, степень переплетения веревки в разных местах спутанного узла различна.

Если волчок вертится перед зеркалом, то его зеркальное отражение крутится в обратную сторону! В то же время в зеркале, на плоскости которого он вращается, направление вращения не меняется

Встречается ли китайский штык в природе? Да, конечно. Простейший пример - полиэтилен, пластмасса, из которой делают чаши, трубы и другие предметы. Полиэтилен состоит практически только из углерода и водорода; в химическом отношении он принадлежит к парафинам. Вы легко узнаете полиэтилен на ощупь - по его воскоподобной поверхности. По своему химическому строению полиэтилен (сокращенно ПЭ) - это цепь из нескольких десятков тысяч атомов углерода, с каждым из которых связано по два атома водорода. Если бы тем все и ограничивалось, молекулы ПЭ лежали бы, аккуратненько вытянувшись, рядом друг с другом или друг на друге и такой материал был бы мало на что пригоден. К счастью для химической промышленности, полиэтиленовая цепочка не прямолинейна. Каждое последующее звено несколько смещено в сторону по отношению к предыдущему, так что нитевидная молекула образует самый настоящий китайский штык. С этим запутанным узлом у молекулы ПЭ еще одно общее свойство: некоторые ее участки представляют собой совершенно спутанный узел, а на отдельных отрезках существует определенный порядок и симметрия. Атомы здесь почти близки к образованию кристаллической решетки. Химикам удается обнаружить такие участки с помощью рентгеновских лучей. Их называют кристаллоподобными или квазикристаллическими, так как атомы в них почти образуют кристалл.

Именно то, что нитевидные молекулы полиэтилена спутаны в китайский штык, и определяет особые свойства этого материала. Под действием нагрузки молекулярные клубки вытягиваются до тех пор, пока цепочки взаимно не зажмут друг друга - совсем так, как это происходило с нашей бельевой веревкой. На каком-то этапе растяжение прекратится. Но после снятия напряжения растянутый моток спружинит и снова примет первоначальное положение. А вот если действие сравнительно небольшой нагрузки будет длительным, у спутанных клубков окажется достаточно времени, чтобы распутаться. Кусок полиэтилена будет становиться все длиннее и длиннее - он потечет. На заре применения пластмасс из них делали болты и гайки. Но, туго затянув пластмассовый болт, через несколько дней обнаруживали, что соединение ослабело - болт саморазвинчивался, так как материал тек под нагрузкой. Операцию можно было повторять сколь угодно часто с неизменным результатом. Так что, как видите, мало создать новые материалы - необходимо еще точно установить, где и для чего их можно использовать.

СКАТАННЫЙ КОВЕР В «АНТИМИРЕ»

Глядя на скатанный ковер или шерстяное

одеяло либо просто на туго свернутый в трубку лист бумаги, вы видите на торцевых концах рулонов спираль. Нам ведь уже известно, что спираль лишена всякой симметртш. Она ничем не лучше того запутанного узла, который образует полиэтиленовая молекула. Однако вспомните: у зеркального отражения спирали витки направлены в противоположную оригиналу сторону. Это вселяет в нас надежду все же разглядеть в скатанном ковре кое-что интересное.

Давайте договоримся считать спиралью щель между слоями свернутого ковра, так как витки такой спирали всегда будут находиться на одинаковом расстоянии друг от друга, равном толщине ковра.

Теперь немного расслабьте скатанный ковер, чтобы рулон стал менее тугим. А еще лучше взять изношенную часовую пружину. Теперь мы увидим спираль совершенно иного рода. Промежутки между витками у нее больше не одинаковы, а возрастают от внутренних витков к внешним. В математическом идеальном случае витки все время располагаются под одним и тем же углом к прямой, исходящей из центра спирали.

Молекулы полиэтилена образуют длинные цепочки

Великий Архимед (около 285-212 гг. до н. э.) первым описал «ковровую» спираль. В честь его она и получила название «архимедова спираль» (или «спираль Архимеда»). Спираль же, которую мы рассмотрели на примере отслужившей свой срок часовой пружины, называется логарифмической. Иногда трудно точно определить, с какого вида спиралью мы столкнулись. В большинстве своем это переходные типы между архимедовой и логарифмической спиралями.

Бороздки на долгоиграющих пластинках представляют собой архимедовы спирали. Напротив, природа предпочитает спирали логарифмические. На это у нее свои веские основания, о которых мы уже говорили при описании сосновых шишек и раковин и которые связаны с образованием поверхностью капли краевого угла. Именно этот угол приводит к возникновению логарифмической спирали - ведь она пересекает прямую, проведенную из центра в любом месте под одинаковым углом.

Как же соотносятся между собой спирали на противоположных торцах скатанного в рулон ковра? Они образованы одним и тем же ковром при скатывании его в одном направлении. И тем не менее одна спираль закручивается налево, а другая - направо. Они ведут себя как изображение и его зеркальное отражение.

У архимедовой спирали расстояния между витками всегда одинаковы

Если вы этому не поверите - а осознать это нелегко, - то скатайте лист бумаги и согните получившийся ролик таким образом, чтобы его концы располагались рядом друг с другом.

Теперь отчетливо видно, что спирали направлены в противоположные стороны. Возьмите ножницы и разрежьте бумажный ролик поперек. Одним махом вы образовали две новые противонаправленные спирали. Это ошарашивает почти так же, как разрезание ленты Мёбиуса (см. раздел «Чарли Чаплин и морской узел»). Некоторые виды пауков строят свою сеть в форме спирали. Представим себе, что два зоолога находят такую вот сеть. По мнению одного из них, она представляет собой правозакрученную спираль. Но другой зоолог случайно оказывается по другую сторону паутины. И он станет возражать. Его паук ткет в левом направлении. На этом примере мы снова видим, как зависят левое или правое от того, где находится наблюдатель.

У логарифмической спирали все время выдерживается постоянный угол относительно оси (раковина улитки)

Вопрос еще больше усложняется, если нет ясности, как построена спираль: от центра к периферии или от периферии к центру. Попросим кого-нибудь нарисовать правую спираль от внутренних витков к наружным. Потом прикроем его рисунок, и пусть он изобразит правую спираль снаружи внутрь. Естественно, при этом появится зеркальное изображение первой спирали.

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Сумман твоего сердца

Арниева Юлия
Фантастика:
фэнтези
5.60
рейтинг книги
Сумман твоего сердца

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак

От океана до степи

Стариков Антон
3. Игра в жизнь
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
От океана до степи

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

Любимая учительница

Зайцева Мария
1. совершенная любовь
Любовные романы:
современные любовные романы
эро литература
8.73
рейтинг книги
Любимая учительница

Хроники странного королевства. Возвращение (Дилогия)

Панкеева Оксана Петровна
Хроники странного королевства
Фантастика:
фэнтези
9.30
рейтинг книги
Хроники странного королевства. Возвращение (Дилогия)

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Вторая мировая война

Бивор Энтони
Научно-образовательная:
история
военная история
6.67
рейтинг книги
Вторая мировая война

Третий. Том 2

INDIGO
2. Отпуск
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 2

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Игра престолов. Битва королей

Мартин Джордж Р.Р.
Песнь Льда и Огня
Фантастика:
фэнтези
боевая фантастика
8.77
рейтинг книги
Игра престолов. Битва королей