Чтение онлайн

на главную - закладки

Жанры

Живая математика. Математические рассказы и головоломки
Шрифт:

Теперь будем присоединять вещь В к каждой из этих пар. Мы можем сделать это трояко: можем

1) поместить В позади пары,

2)» В впереди пары,

3)» В между вещами пары.

Других положений для вещи В, кроме этих трех, очевидно, быть не может. А так как у нас две пары - АБ и БА, то всех способов разместить вещи наберется

2x3 = 6.

Рис. 83. Две вещи можно разместить только двумя способами

Рис. 84. Три вещи можно разместить шестью способами

Способы

эти показаны на рис. 84.

Пойдем дальше - сделаем расчет для 4 вещей. Пусть у нас 4 вещи: А, Б, В, и Г. Опять отложим пока в сторону одну вещь, например Г; ас остальными тремя сделаем все возможные перестановки.

Мы знаем уже, что число этих перестановок - 6. Сколькими же способами можно присоединить четвертую вещь Г к каждой из 6 троек? Очевидно, четырьмя: можно

1) поместить Г позади тройки;

2)» Г впереди тройки;

3)» Г между 1-й и 2-й вещью;

4)» Г между 2-й и 3-й вещью.

Всего получим, следовательно,

6 х 4 = 24 перестановки;

а так как 6 = 2 х 3 и 2 = 1 х 2, то число всех перестановок можно представить в виде произведения:

1 x 2 x 3 x 4 = 24.

Рассуждая таким же образом в случае 5 предметов, узнаем, что для них число перестановок равно

1 х 2 х З х 4 х 5 = 120.

Для 6 предметов:

1 х 2 х З х 4 х 5 х 6 = 720 и т. д.

Обратимся теперь к случаю с 10 обедающими. Число возможных здесь перестановок определится, если дать себе труд вычислить произведение

1 х 2 х 3 х 4 х 5 х 6 х 7 х 8 х 9 х 10.

Тогда и получится указанное выше число 3 628 800.

III

Расчет был бы сложнее, если бы среди 10 обедающих было 5 девушек и они желали бы сидеть за столом непременно так, чтобы чередоваться с юношами. Хотя число возможных перемещений здесь гораздо меньше, вычислить его несколько труднее.

Пусть сядет за стол - безразлично как - один из юношей. Остальные четверо могут разместиться, оставляя между собою пустые стулья для девушек, 1 х 2 х З х 4 = = 24 различными способами. Так как всех стульев 10, то первый юноша может сесть 10 способами; значит, число всех возможных размещений для молодых людей 10 х 24 = 240.

Сколькими же способами могут сесть на пустые стулья между юношами 5 девушек? Очевидно, 1 х 2 х 3 х 4 х 5 = 120 способами. Сочетая каждое из 240 положений юношей с каждым из 120 положений девушек, получаем число всех возможных размещений:

240 х 120 = 28 800.

Число это во много раз меньше предыдущего и потребовало бы всего 79 лет (без малого). Доживи молодые посетители ресторана до столетнего возраста, они могли бы дождаться бесплатного обеда если не от самого официанта, то от его наследников.

Умея подсчитывать перестановки, мы можем определить теперь, сколько различных расположений шашек [16] возможно в коробке игры в «15». Другими словами, можем подсчитать число всех задач, какие способна предложить нам эта игра. Легко понять, что подсчет сводится к определению числа перестановок из 15 предметов. Мы знаем уже, что для этого нужно перемножить

16

При этом свободная клетка должна всегда оставаться в правом нижнем углу.

1 х 2 х 3 х 4 х… и т. д… х 14 х 15.

Вычисление дает итог:

1 307 674 365 000,

т. е. больше триллиона.

Из этого огромного числа задач половина неразрешима. Существует, значит, свыше 600 миллиардов неразрешимых положений в этой игре. Отсюда понятна отчасти та эпидемия увлечения игрой в «15», которая охватила людей, не подозревавших о существовании такого огромного числа неразрешимых случаев.

IV

Заканчивая

нашу беседу о числе перестановок, решим такую задачу из школьной жизни.

В классе 25 учеников. Сколькими способами можно рассадить их по партам?

Путь решения этой задачи - для тех, кто усвоил себе все сказанное раньше - весьма несложен: нужно перемножить 25 таких чисел:

1 х 2 х З х 4 х 5 х 6… х 23 х 24 х 25.

Результат получается огромный, из 26 цифр - число, величину которого наше воображение не в силах себе представить. Вот оно: [17]

15 511 210 043 330 985 984 000 000.

Из всех чисел, какие встречались нам до сих пор, это, конечно, самое крупное, и ему больше всех прочих принадлежит право называться «числом-великаном».

17

Как прочесть это число? Оно произносится так: 15 511 секстиллионов 210 квинтиллионов 43 квадриллиона 330 триллионов 985 миллиардов 984 миллиона. –Прим. ред.

61. Перекладывание монет

В детстве старший брат показал мне, помню, занимательную игру с монетами. Поставив рядом три блюдца, он положил в крайнее блюдце стопку из 5 монет: вниз - рублевую, на нее - полтинник, выше - двугривенный, далее - пятиалтынный и на самый верх - гривенник [18] .

Рис. 85. Брат показал мне занимательную игру

–  Все 5 монет, - заявил он, - нужно перенести на третье блюдце, соблюдая следующие три правила, первое правило: за один раз перекладывать только одну монету. Второе: никогда не класть большей монеты на меньшую. Третье: можно временно класть монеты и на среднее блюдце, соблюдая оба правила, но к концу игры все монеты должны очутиться на третьем блюдце в первоначальном порядке. Правила, как видишь, несложные. А теперь приступай к делу.

18

Полтинник– монета достоинством 50 коп.,двугривенный– 20 коп.,пятиалтынный– 15 коп.,гривенник– 10 коп.

Повторяя эту игру, читатель может взять любые 5 монет (или картонных кружков). Важно лишь, чтобы монета, лежащая в самом начале внизу, была самой большой, а дальше монеты располагались в порядке убывания их диаметра снизу вверх. –Прим. ред.

Так выглядели монеты, о которых идет речь

Я принялся перекладывать. Положил гривенник на третье блюдце, пятиалтынный на среднее и запнулся. Куда положить двугривенный? Ведь он крупнее и гривенника, и пятиалтынного.

–  Ну, что же?
– выручил меня брат.
– Клади гривенник на среднее блюдце, поверх пятиалтынного. Тогда для двугривенного освободится третье блюдце.

Я так и сделал. Но дальше - новое затруднение. Куда положить полтинник? Впрочем, я скоро догадался: перенес сначала гривенник на первое блюдце, пятиалтынный на третье и затем гривенник тоже на третье. Теперь полтинник можно положить на свободное среднее блюдце. Дальше, после длинного ряда перекладываний, мне удалось перенести также рублевую монету с первого блюдца и, наконец, собрать всю кучку монет на третьем блюдце.

Поделиться:
Популярные книги

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Город Богов 4

Парсиев Дмитрий
4. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 4

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Девочка из прошлого

Тоцка Тала
3. Айдаровы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка из прошлого

Бастард Императора

Орлов Андрей Юрьевич
1. Бастард Императора
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Бастард Императора

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал