Живой кристалл
Шрифт:
Два способа рассказать о событии в партере, где одно кресло оказалось свободным, свидетельствуют о том, что описание сложных судеб множества атомов можно заменить описанием движения вакансий. Это во многих случаях оказывается удобным и полезным. Еще раз подчеркну, что речь, разумеется, идет лишь о способе выражаться и не более того.
Обсудим теперь задачу о смещении атома, участвующего в бесцельном хаотическом блуждании. Интуиция может подсказать, что хаотическое блуждание и топтание на месте — понятия идентичные и, следовательно, блуждающий атом «в среднем» должен оставаться на месте. Это обманная подсказка. Убедиться в этом можно на следующем простом примере.
Пусть в обычный трудовой день из таксомоторного парка одновременно выезжает большое количество такси. Каждое из них движется, выполняя просьбу очередного случайного пассажира, и, значит, направление очередного рейса совершенно произвольно и никак
X2n = па2.
Он означает, что если величину смещения X каждого из атомов после п скачков на одинаковое расстояние а возвести в квадрат, а затем вычислить среднюю величину этих квадратов X2n, то окажется, что она пропорциональна числу скачков.
Слово «скачок» появилось потому, что от такси мы уже перешли к атомам. Так как время ожидания очередного скачка (или время «оседлой жизни») в среднем постоянно и за время t атом совершит п = t/ скачков, приведенное уравнение можно переписать в другом виде:
Если теперь опять от атомов перейти к такси, то полученный результат означает, что среднее расстояние между многими такси и таксомоторным парком, из которого они вышли одновременно, со временем изменяется по закону t1/2 . Последнюю формулу удобно переписать в другом виде:
X 2 n=Dt
Величина D = а2/ называется коэффициентом самодиффузии.
При строгом расчете, когда учитываются все шесть возможных перемещений атома (вперед и назад вдоль каждого из трех направлений в пространстве), оказывается, что D = а2/6.
А теперь модельный эксперимент «блуждающие точки». Заставьте хаотически блуждать 10 точек, потребовав, чтобы каждая из них двигалась вдоль прямой: когда брошенная монета падает «орлом» — шаг вправо (например, сантиметровый), «решеткой» —
Хотелось бы в координатах X2n и п получить прямую, согласно формуле именно прямая и должна быть. На нашем графике точки, не ложась точно на прямую, рассыпаны вблизи нее. Это естественно, так как слишком мало точек и шагов, слишком мала статистика для того, чтобы вероятностные законы обрели точность. Однако и в нашем опыте (всего 10 точек, каждая по 100 шагов) закон X2n ~ п себя проявил.
Итак, оказывается хаос — не хаос! В нем скрыты строгие закономерности, которые себя отчетливо проявляют в процессе хаотических блужданий атомов в кристалле — тем отчетливее, чем больше атомов и чем большее число неупорядоченных скачков совершает каждый из них.
Нам, вглядывающимся в непременные признаки жизни кристалла, конечно же, следует познакомиться с количественными характеристиками того процесса, который мы называем «обычная классическая самодиффузия» или «бесцельное блуждание атомов в кристалле». Будем говорить главным образом о вакансиях, твердо помня при этом, как взаимообусловлены перемещения вакансий и атомов.
Совокупность вакансий в кристалле может быть уподоблена идеальному газу. Аналогия между газом реальных молекул или атомов и газом «атомов пустоты» имеет вполне разумные основания. Подобно молекулам идеального газа, вакансии в кристаллической решетке находятся друг от друга на значительных расстояниях и поэтому практически между собой не взаимодействуют. Иногда они сталкиваются, после чего уходят в разные стороны.
Для того чтобы пользоваться этой аналогией, следует убедиться, что, подобно идеальному газу, газ вакансий разрежен. Это основное условие, которому должен удовлетворять идеальный газ. Оценим среднее расстояние между вакансиями l . Если в единице объема находится п вакансий, то
т. е. вакансии в среднем удалены друг от друга на двадцать межатомных расстояний. Приблизительно на таком же расстоянии друг от друга находятся молекулы в воздухе при атмосферном давлении. С понижением температуры концентрация вакансий с быстро уменьшается, среднее расстояние между ними l увеличивается, газ вакансий становится еще более разреженным, а это означает, что основное условие идеальности оказывается выполненным.