Чтение онлайн

на главную - закладки

Жанры

Живой учебник геометрии
Шрифт:

Р е ш е н и е. Надо начертить прямоугольник с основанием b и такой высотой х, чтобы = ax

Из последнего равенства вытекает пропорция b/a = h/x.

Следовательно, искомая высота х есть 4-я пропорциональная к a, h и b. Построив; ее по указанному раньше способу, мы сможем начертить и искомый прямо угольник.

80. Начертить прямоугольник с высотою b, равновеликий треугольнику с основанием а и высотою h.

Р

е ш е н и е сводится к нахождению основания прямоугольника такой длины x, чтобы = bx = ah/2., т. е.,

чтобы x: a/2 = h: b

Значит, отрезок х есть 4-я пропорциональная к,a/2.h и b

81. Средняя линия трапеции p, высота – q. Построить равновеликий ей прямоугольник со стороною b.

Р е ш е н и е. Прямоугольник легко можно построить, если найдена будет его другая сторона х такой длины, что bx= pq, и следовательно х : р = д : b. Значит, х есть 4-я пропорциональная к р, q и b.

§ 67. Поперечный масштаб»

На свойстве подобных треугольников основано устройство так называемого «поперечного масштаба», которым пользуются при черчении планов. Устройство его показано на черт. 202. Пусть расстояние BA соответствует на плане в каком-нибудь определенном масштабе, 1 километру (или 5, 10, 20 километрам) в натуре. Это расстояние разделено на 10.равных частей; на столько же частей разделено» и расстояние KL= АВ; АК перпендикулярно к АВ и к КL; точки деления АВ и КL соединены между собою наклонными линиями, как показано на чертеже. После сказанного в § 57 понятно, что отрезки параллельных прямых, отсекаемых: углом OLBсоставляют последовательно (считая от вершины L) 0,1, 0,2, 0,3, 0,4 и т. д. отрезка ОВ. А так как отрезок ОB сам составляет 0,1 длины АВ, то указанные отрезки составляют 0,01, 0,2, 0,03 и т. д. длины АВ.

Отсюда ясна возможность помощью поперечного масштаба получать весьма малые доли масштабной единицы АВ. Если необходимо, например, раздвинуть ножки циркуля на 2,73 АВ, то помещают одну ножку циркуля на пересечении 2-й поперечной линии масштаба и 3-й (снизу) продольной; другую же – на пересечении той же 3-й продольной линии и 7-й косой: тогда острия циркуля окажутся раздвинутыми на 2,73 АВ. Чтобы раздвинуть их на 36.8 АВ, надо одно острие поместить на пересечении 3-й поперечной и 8-й продольной линии, а другое – на пересечении 8-й продольной и 6-й косой, и т. д.

На черт. 203 изображен поперечный масштаб, дающий возможность откладывать отрезки с точностью до 0,1 миллиметра.

§ 68. Пантограф

На подобии фигур основано также устройство и употребление прибора, называемого п а н т о г р а ф о м и служащего для перерисовывания фигур в измененном масштабе. Он состоит (черт. 204) из четырех планок АВ, BC, CD и AD, соединенных в форме параллелограмма так, что планки могут свободно вращаться в углах; поперечная планка ЕF располагается параллельно AD и может быть перемещаема по желанию. При употреблении прибора его укрепляют неподвижно в А и обводят перерисовываемый контур штифтом K; тогда карандаш С вычерчивает

тот же контур в увеличенном виде; все размеры получаются в столько раз крупнее, во сколько раз АС больше АК (или АВ больше АЕ). Если, например, штифт А (черт. 204) переместился в N, т. е. прошел черту KN, то карандаш С переместился в М, т. е. начертил линию СМ; из подобия треугольников АСМ и AKN (почему они подобны?) имеем, что СМ : KN– АС : АК, или АВ : АЕ. Отсюда следует, что желая увеличить рисунок, например, в 5 раз, мы должны поместить планку EF так, чтобы АВ было в 5 раз больше АЕ.

Нетрудно догадаться, как следует пользоваться пантографом для перерисовывания фигур и в у м е н ь ш е н н о м масштабе.

§ 69. Площади подобных треугольников

Предварительное упражнение

В треугольниках АВС и DEF уг. A= уг. D: ВМ и EN – высоты. Укажите все подобные треугольники в этих фигурах.

Между площадями подобных треугольников существует определенное соотношение, которое мы сейчас установим.

Пусть у нас имеются два подобных треугольника I и II (черт. 205). Проведем высоты ВМ = h и EN= l к сходственным сторонам АС = b и DF= e. Площадь треугольника I равна bh, треугольника II – el. Отношение их равно

Значит,

п л о щ а д и п о д о б н ы х т р е у г о л ь н и к о в о т н о с я т с я к а к к в а д р а т ы с х о д с т в е н н ы х с т о р о н.

§ 70. Площади всяких подобных фигур

То, что мы установили в предыдущем параграфе для подобных треугольников, справедливо, как сейчас увидим; и для всяких подобных многоугольников: их площади относятся, как квадраты сходственных сторон. Вообще,

п л о щ а д и в с я к и х п о д о б н ы х ф и г у р о т н о с я т с я м е ж д у с о б о ю к а к к в а д р а т ы и х л и н е й н ы х р а з м е р о в. Это вытекает из следующих соображений. Пусть у нас имеются две подобные фигуры, при чем линейные размеры первой фигуры в 10 раз меньше размеров второй фигуры. Покроем меньшую фигуру палеткой, разграфленной на миллиметровые квадратики, а большую фигуру – палеткой, разграфленной на сантиметровые квадратики. Так как все линейные размеры первой фигуры содержат столько миллиметров, сколько размеры второй фигуры содержат сантиметров, то первая фигура будет заключать столько же миллиметровых квадратиков, сколько вторая – сантиметровых. Число квадратиков в обеих фигурах одинаково, но каждый квадратик первой фигуры меньше квадратика второй фигуры. Значит, площадь первой фигуры меньше площади второй во столько раз, во сколько один миллиметровый квадратик меньше сантиметрового, т. е. в 10 ? 10 = 100 раз.

Если линейные размеры подобных фигур относятся не как 1: 10, а например, как 1: 7, то сходным рассуждением можно установить, что площадь первой фигуры меньше второй в 49 раз; при отношении линейных размеров 8: 3 – больше в 64/9 раз и т. п.

Поэтому, если план здания исполнен в масштабе 1/20,то каждый его участок меньше площади того же участка в натуре в 20 ? 20, т. е. в 400 раз.

Повторительные вопросы к §§ 68–70

Как относятся площади подобных треугольников? – Многоугольников? – Всяких вообще плоских «фигур? – Справедливо ли это правило для кругов?

Поделиться:
Популярные книги

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Адептус Астартес: Омнибус. Том I

Коллектив авторов
Warhammer 40000
Фантастика:
боевая фантастика
4.50
рейтинг книги
Адептус Астартес: Омнибус. Том I

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Часовой ключ

Щерба Наталья Васильевна
1. Часодеи
Фантастика:
фэнтези
9.36
рейтинг книги
Часовой ключ

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Даррелл. Тетралогия

Мельцов Илья Николаевич
Даррелл
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Даррелл. Тетралогия

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

Монстр из прошлого тысячелетия

Еслер Андрей
5. Соприкосновение миров
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Монстр из прошлого тысячелетия

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус