Чтение онлайн

на главную

Жанры

Журнал «Вокруг Света» №10 за 2007 год
Шрифт:

Через некоторое время сеть (если она обладает достаточной мощностью) научается правильно реагировать на предъявляемые сигналы. Подобные сети используются, например, в системах распознавания текста. Отсканированная страница разбивается на строки, строки — на символы, а дальше по каждому символу принимается решение — какой букве он соответствует, иначе — какой ее порядковый номер в алфавите. Одна и та же буква каждый раз выглядит на бумаге немного по-другому — из-за различий в шрифте, соседства других букв, неоднородности бумаги и множества других причин. Обученная нейронная сеть начинает узнавать в несколько различающихся, но все же похожих картинках одну букву и отличать ее от других.

Но как ей это удается? Возьмем отдельный нейрон из середины сети и попробуем понять: почему он реагирует на сигналы соседей так, а не иначе? Увы, в сложной сети это совершенно безнадежное дело. Ее «опыт» не локализован в отдельном нейроне, им обладает только сеть в целом. Можно перепрограммировать нейрон и посмотреть, какие ошибки станет делать сеть. Так изучают и человеческий

мозг — смотрят, какие изменения вызывает стимуляция тех или иных центров. Но, даже поняв функции отдельных нейронов, обычно нельзя объяснить, почему эти функции выполняются именно при такой настройке.

До сих пор науке обычно удавалось находить простые закономерности, объясняющие сложные явления, подобно тому, как хаотическое поведение молекул газа удалось описать емкими формулами статистической физики. Но похоже, что происхождение и работу интеллекта, даже искусственного, нельзя объяснить, не воспроизведя этот интеллект «со всеми потрохами».

Генетические алгоритмы

Есть еще один способ создания систем ИИ, имитирующий биологическую эволюцию. Задача кодируется на специальном языке, напоминающем генетический код. В код случайным образом вносятся «мутации», и оценивается, насколько хорошо каждая из версий кода («особь») приспособлена для решения задачи. Наименее приспособленные «вымирают», а остальные «скрещиваются», обмениваясь фрагментами кода, порождая новое «поколение» кодов, которое подвергается новому циклу отбора. Так повторяется, пока не исчерпается время, отпущенное на эволюцию. Генетические алгоритмы применяются для задач оптимизации, таких как поиск кратчайшего пути, составления расписаний, выбора игровой стратегии. Отличительная особенность таких задач — существование огромного числа возможных решений, найти которые очень просто, но среди них нужно выбрать как можно лучшее. Применение искусственного интеллекта

Игры и игрушки. ИИ наделяет игровых персонажей способностью к нешаблонному поведению, которое сложным образом связано с действиями играющего. Это делает игру намного интереснее. Распознавание образов и речи. Человек и животные легко узнают окружающие предметы и сигналы, но мы не отдаем себе отчета, как это получается. Для компьютера, который воспринимает только массивы чисел, распознать в них осмысленные образы — сложная задача. Машинный перевод и обработка текстов на естественном языке. ИИ необходим для учета контекста при выборе из множества возможных значений переводимых слов и грамматических конструкций. ИИ используют для быстрой тематической классификации текстов, например, сообщений информагентств, для автоматического реферирования — выделения главных фраз, позволяющих решить, тратить ли время на детальное ознакомление с документом. Выявление закономерностей в массивах данных. Интеллектуальный анализ крупных баз данных (например, продаж в сети супермаркетов или расшифрованного генома) иногда выявляет закономерности, которых никто не предполагал. Эта сфера получила название data mining (добыча данных). Классический пример: обнаружение корреляции продаж памперсов и пива. Жены отправляют мужей за памперсами, а те заодно «утешают» себя покупкой пива. Поставив стеллажи с пивом и памперсами рядом, удалось заметно поднять продажи. Адаптация к поведению пользователя. Программы могут анализировать привычки пользователя и приспосабливаться к нему, заранее готовясь к выполнению наиболее вероятных действий или убирая из поля зрения лишние детали. Многофакторная оптимизация. Частый вопрос: как найти оптимум, когда на результат влияет очень много параметров? ИИ позволяет значительно сузить область поиска, ускоряя принятие решений и повышая их качество. Оценка рисков, прогнозирование. Оперативное построение прогноза с учетом предшествующей истории, например, на бирже; оценка рисков, связанных с разными вариантами поведения. Особый случай: интеллектуальные системы безопасности для автомобилей, реагирующие на опасные дорожные ситуации быстрее водителя. Диагностика. Быстрое выявление заболеваний и неисправностей по совокупности признаков. Последние три сферы применения часто объединяют под названием «поддержка принятия решений».

Исследователь Синтия Бризил «общается» с роботом Кисмет. Последний был создан для изучения возможности мгновенного распознавания мимики и построения реакции в зависимости от настроения «собеседника»

Границы разума

Чем интеллектуальнее становятся системы, тем труднее сказать, как именно они принимают решения. Объяснение получается не проще объясняемого объекта. Выходит, что создать ИИ можно, а вот «заглянуть» в механизм его действия не получается. Разрушается одна из старых иллюзий, будто создать можно лишь то, что полностью понимаешь.

Но это наше бессилие в объяснениях проблемы разума открывает перед нами фантастические возможности. Получается, что нет принципиальных препятствий для создания все более и более умных, функциональных и в то же время дешевых роботов.

Если можно создать систему, которую не понимаешь, если для формирования сложного целенаправленного поведения достаточно простых компонент, объединенных обратными связями, и возможности обучаться на ошибках, то возникновение человеческого разума уже не кажется парадоксальным, и резонно предположить, что со временем появятся машины, думающие, как человек. Или не как человек, но точно — думающие.

И здесь возникает вопрос о самосознании искусственных интеллектуальных систем. По каким признакам мы можем судить о его наличии? Философы и психологи так и не смогли прояснить суть этого феномена, составляющего самое ядро личности. Целесообразное поведение можно запрограммировать. Эмоции, способность испытывать любовь и страдания присущи большинству млекопитающих. А некоторые из них — шимпанзе, дельфины, слоны — даже узнают себя в зеркале. Означает ли это, что у них есть самосознание?

Вряд ли оно есть у насекомых или членистоногих. И тем более нет оснований говорить о самосознании современных систем ИИ, которые намного уступают им по сложности организации. Но сложность — это вопрос времени, и пока нельзя сказать, где проходит порог возникновения сознания в интеллектуальной машине. Да и вряд ли этот порог будет сколько-нибудь четким. Просто надо быть готовым к его приближению. Вполне возможно, что первый разум, с которым нам доведется установить контакт, будет вовсе не внеземным, а искусственным. И никто пока не может сказать, в какой момент выключение питания станет актом, сомнительным с этической точки зрения.

Александр Сергеев

Золотой петушок Евразии

«Каждый охотник желает знать, где сидит фазан...» Надо сказать, что места обитания фазанов — не секрет, но одного этого знания недостаточно, успех охоты полностью зависит от того, насколько хорошо изучены их повадки. Для европейцев эти крупные и яркие птицы стали дичью номер один, а шляпа, украшенная их перьями, — символом принадлежности к охотничьему сословию.

Зоосправка

Фазан обыкновенный — Phasianus colchicus

Тип — хордовые

Класс — птицы

Отряд — курообразные

Семейство — фазановые (Phasionidae) или павлиновые (Pavonidae) Довольно крупная птица: длина тела самца — 80—90 сантиметров (из которых 40—50 приходятся на клиновидный хвост), самки — около 60 сантиметров (при длине хвоста около 30). Вес — от 700 граммов (некрупная самка) до почти 2 килограммов (крупный самец к концу осени). Продолжительность жизни — 5—7 лет, взрослым становится после первой зимовки (около 10 месяцев). Сильно выражен половой диморфизм: самцы значительно крупнее самок и гораздо ярче окрашены. В естественном состоянии встречается почти по всему степному и горному поясу Азии — от западного Кавказа до Японии (хотя в горы поднимается не выше 2 500 метров). Однако ввиду привязанности фазана к постоянным водоемам и высокопродуктивным растительным сообществам населенные им угодья составляют лишь небольшую часть формального ареала и сильно фрагментированы. Это способствует формированию устойчивых местных разновидностей. На сегодня известно более 30 подвидов, или географических форм обыкновенного фазана, причем многие из них долгое время считались самостоятельными видами. Однако все они успешно скрещиваются между собой и дают плодовитое потомство. Межподвидовые гибриды неизвестного происхождения, полученные в ходе искусственного разведения (фазаньи фермы известны в Европе с XIV века), дали начало европейской, американской, австралийской и ряду других вторичных популяций фазана, в связи с чем птицы из этих популяций не имеют подвидовой принадлежности и проходят под условным названием «фазан охотничий». Фазан успешно вписался в природные и сельскохозяйственные биоценозы Европы и способен стабильно существовать в них. Однако в районах интенсивной охоты (фазан считается лучшей пернатой дичью Европы и парадным блюдом многих национальных кухонь) искусственно поддерживается завышенная численность птицы. С этой целью в природу ежегодно выпускают десятки тысяч молодых фазанов, выращенных на специальных фермах. Интересно, что при вольерном разведении фазаны-петухи становятся полигамными, в то время как в естественных условиях они практически моногамны.

В окраске самцов сочетаются золотистые, зеленые, синие, красные цвета. Самки на их фоне выглядят скромницами

Латинское имя фазана — Phasianus colchicus во многом поясняет его происхождение: «фазианус» означает «житель Фазиса». Так древние эллины называли реку, известную нам сегодня как Риони. Туда же отсылает и видовой эпитет «колхикус»: как известно, Фазис-Риони — главная река Колхиды, болотистой низменности на восточном берегу Черного моря, легендарной страны аргонавтов. Согласно преданию, они-то и привезли оттуда не только золотое руно, но и невиданную красавицу-птицу.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Неудержимый. Книга XX

Боярский Андрей
20. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XX

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

"Фантастика 2024-161". Компиляция. Книги 1-29

Блэк Петр
Фантастика 2024. Компиляция
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
рпг
5.00
рейтинг книги
Фантастика 2024-161. Компиляция. Книги 1-29

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Красноармеец

Поселягин Владимир Геннадьевич
1. Красноармеец
Фантастика:
боевая фантастика
попаданцы
4.60
рейтинг книги
Красноармеец

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал