Знание-сила, 1997 № 05 (839)
Шрифт:
А ласточка? Если взять все клетки ласточки и просто собрать их в кучу, то шансы получить летающий объект практически равны нулю. Не все живые объекты летают, однако они делают многое другое, причем это другое столь же маловероятно и точно так же определяемо заранее. Киты не летают, но зато они плавают и притом почти так же хорошо, как ласточки летают. Шансы на то, что случайная масса китовых клеток могла бы плавать, да еще так же быстро и эффективно, как плавает кит, пренебрежимо малы. Можно бесконечное число раз собирать наугад клетки в кучи на протяжении миллиардов лет и ни разу не получить конгломерат, способный летать или плавать, или рыть, или бегать, или делать, пусть даже скверно, что-нибудь такое, что можно было бы хотя бы с натяжкой истолковать как деятельность, обеспечивающую
Итак, сложным мы называем объект, существование которого мы склонны считать требующим объяснения, потому что оно представляется слишком маловероятным. Такой объект не мог возникнуть сразу, в результате одного случайного акта. Мы намерены объяснить его возникновение как результат постепенных, шаг за шагом накапливающихся трансформаций, начиная с гораздо менее сложных зачаточных объектов, достаточно простых, чтобы они могли возникнуть случайным образом.
Оксфордский физикохимик Питер Аткинс начинает свою превосходно написанную книгу «Сотворение мира» так: «Я приглашаю ваш разум в путешествие. Это путешествие познания, ведущее нас на край пространства, времени и понимания. Во время этого путешествия я буду постоянно твердить, что на свете нет ничего такого, что нельзя было бы объяснить, и что все необычайно просто. Огромная часть Вселенной не требует объяснения. Например, слоны. Как только молекулы научились конкурировать друг с другом и создавать другие молекулы по своему подобию, на просторах земли неизбежно должны были появиться слоны и другие существа, похожие на слонов».
Однако это утверждение Аткинса связано с тем, что он физик, принимающий на веру теорию эволюции, созданную биологами. На самом же деле он имеет в виду не то, что возникновение слонов не требует объяснения, а лишь то, что его удовлетворяет объяснение, которое дают этому биологи, при условии, что последним предоставляется право принимать на веру некоторые данные физики. Поэтому его задача как физика состоит в том, чтобы оправдать нас, биологов, принимающих эти факты на веру. Это ему удается. Я биолог. Я принимаю на веру установленные физикой факты о мире простых вещей. Если физики все еще не договорились между собой о том, можно ли считать, что эти Простые факты поняты, это не моя забота. Моя задача в том, чтобы дать объяснение возникновению слонов и мира сложных вешей на основании тех простых вещей, которые физики либо понимают, либо пытаются понять. Проблема, стоящая перед физиком, это элементарные законы природы и проблема изначального возникновения материи. Проблема же, стоящая перед биологом, это проблема сложности. Биолог старается объяснить поведение и происхождение сложных объектов, отправляясь от более простых объектов. Он может считать свою задачу выполненной, когда дойдет до таких простых реальностей, которые может передать физикам.
Я понимаю, что характеристика, данная мною сложному объекту - «статистически крайне маловероятен в аспекте, определяемом без знания, основанного на опыте»,— может показаться слишком субъективной. Такой же может показаться моя характеристика физики как науки, изучающей мир простых вещей. Если вы предпочитаете определять сложность как-то иначе, то мне это безразлично, и я готов согласиться с вашим определением, чтобы можно было продолжить дискуссию.
Однако я буду настаивать, чтобы независимо от того, как мы решим называть качество «быть статистически маловероятным в аспекте, определяемом без знания, основанного на опыте», оно было признано важным качеством, объяснение которого требует особых усилий. Это то качество, которое характеризует биологические объекты и отличает их от объектов физики. Определение, к которому мы придем, не должно противоречить законам физики. Более того, в нем должны быть использованы законы физики и ничто другое, кроме законов физики. Но законы эти должны быть использованы особым образом, который обычно не рассматривается в учебниках физики. Этот особый способ — способ, избранный Дарвином. •
Перевела с английского И. Фомина
ФОКУС
Впервые в мире изготовлена батарейка, целиком состоящая из пластмассы.
Литиевые батарейки, батарейки со ртутью, свинцово-кислотные элементы для стартеров в моторах машин, никелево-кадмиевые батарейки - все они содержат ядовитые металлы, и соблюдать безопасность при работе с ними дело непростое и дорогое. А сбор отработанных батареек еще повышает и без того немалую стоимость.
Все эти печальные свойства такой необходимой вещи побудили Джо Сатера запяться изобретением безвредной батарейки. И, похоже, ему это удалось. В лаборатории прикладной физики университета Джона Хопкинса в американском штате Мэриленд, где он трудится, впервые в мире изготовлена целиком пластмассовая батарейка. И хотя до промышленных образцов еще очень далеко, многие владельцы цехов и фабрик уже выстраиваются в очередь, чтобы взглянуть на новорожденное чудо.
Их интересует не только безвредность новой батарейки для окружающей среды. Важно знать, сколько энергии она может запасать в себе, как ее работоспособность зависит от температуры, какое напряжение она выдает и возможно ли ее перезарядить. Похоже, что пластмассовая новинка по многим параметрам превосходит своих ядовитых собратьев. Мало того, впервые в истории батареек им можно будет придавать любую необходимую форму, нужную для слухового аппарата, стереомагнитофона или вживленного в тело микрокомпьютера. После этого перечисления' становится ясно, что промышленники не зря осаждают лабораторию Сатера.
Вообще говоря, в маленькой батарейке идут достаточно сложные физические процессы. Она всегда содержит два электрода, между которыми перемещаются положительные и отрицательные заряды. Фокус состоит в том, что надо заставить ионы передвигаться внутри батареи, чтобы на внешних концах ее электродов создавалась разность потенциалов и она могла выдавать во внешнюю цепь ток, будь то наручные часы или бортовой компьютер космического корабля. Это достигается при помощи электролита — жидкости, где перемещаются ионы.
Каждый из двух электродов выполняет особую функцию. Один порождает электроны — это анод. Его обычно делают из металла, потому что там много свободных электронов. Катод должен, наоборот, поглощать электроны. Его тоже делают из металлов, окислов металлов или их соединений с серой. Электроны уходят с анода и через электрическую цепь доходят до катода, где и поглощаются. Когда батарейка разряжена и происходит обратный процесс зарядки, отрицательные ионы и электроны из раствора электролита собираются на анод.
Возникает простой вопрос: куда же здесь пристроиться пластмассам? Прежде всего они изоляторы и тока не проводят. Оказывается, не все: более двадцати лет химикам известны пластики, проводящие электричество. На молекулярном уровне пластические массы обычно состоят из длинных цепей атомов углерода. Их можно сделать проводниками, только добавив в эти цепи что-то дополнительное.
Тогда может пойти интересный процесс, который на бытовом уровне иллюстрируется такой аналогией.
Представьте себе длинную вереницу автомашин, попавших в пробку. Вдруг одна из них, отчаявшись ждать, выруливает на встречную полосу и отправляется в обратную сторону. В длинной пробке образуется пустое место. На него передвигается следующая машина, на ее место — следующая, «дырка» начинает передвигаться в направлении, противоположном движению машин.
Нечто похожее происходит и в проводящих пластмассах. Если в цепь полипирола, состоящую из углеродных колец, вставить молекулу перхлорида серебра, то в кольце начинает не хватать электрона. Электрон из соседнего кольца перескакивает на место, где его не хватает, и начинается движение «дырки» по цепи полимера. Подобное перемещение ничем не отличается от движения положительного заряда. Можно вставить в кольцо цепи и молекулу с лишним электроном — ион перхлората, к примеру. Тогда начнется перемещение настоящего электрона в обратном направлении.