Чтение онлайн

на главную - закладки

Жанры

Абсолютный минимум. Как квантовая теория объясняет наш мир
Шрифт:

Рис. 14.2. Метан (слева), аммиак (посередине) и вода (справа). Неподелённые пары электронов отталкивают связывающие пары электронов, заставляя связи сближаться, из-за чего уменьшаются углы между связями атомов H с центральным атомом

Молекулы треугольной формы

Если центральный атом связан только с тремя другими атомами, молекула будет иметь прямоугольную форму с четырьмя атомами, лежащими в одной плоскости. На рис. 14.3 изображены две треугольные молекулы: BH3 и H2CO (формальдегид). Молекула BH3 существует, но она химически очень активна, поскольку ей не хватает двух электронов до замкнутой конфигурации оболочки, как у неона. В BH3 каждый

атом H имеет одиночную связь с B. Угол HBH равен в точности 120°. Атомы водорода образуют идеальный равносторонний треугольник. При такой форме молекулы связи оказываются максимально удалёнными друг от друга, что снижает энергию за счёт уменьшения отталкивания между связывающими электронами каждой связи.

В главе 13 на диаграмме МО для O2 (см. рис. 13.8) показано, что молекула кислорода имеет двойную связь. В формальдегиде (пахучей жидкости, которой заполняют банки с биологическими образцами в кабинетах биологии) атом O имеет двойную связь с атомом C. Эта двойная связь показана на шаростержневой модели двумя цилиндрами, соединяющими атомы, вместо одного. Двойная связь обеспечивает атому O замкнутую неоновую конфигурацию оболочки, как в молекуле О2. Атом C нуждается в двух дополнительных электронах, чтобы получить замкнутую неоновую конфигурацию оболочки, и он получает их за счёт одиночных связей с двумя атомами H. Мы ещё обсудим подробно двойные связи, чтобы разобраться, как они могут образовываться из атомных орбиталей, но сейчас нам нужно лишь понять, что двойная связь концентрирует две пары электронов между атомами C и O. Из-за этой дополнительной электронной плотности двойная связь становится шире одиночной. Более толстая двойная связь C=O расталкивает одиночные связи C-H, заставляя их сближаться друг с другом. Все углы обозначены на рис. 14.3. В результате молекула формальдегида, оставаясь плоской треугольной, отклоняется от формы равностороннего треугольника.

Рис. 14.3. Слева: молекула BH 3 . Атомы лежат в одной плоскости. Связи HB являются одинарными, атомы водорода образуют равносторонний треугольник. Все углы HBH равны 120°. Справа: молекула H 2 CO (формальдегид). Атомы лежат в одной плоскости. Связь CO — двойная. Углы не равны

Переходящие электроны

Возвращаясь к метану, зададимся вопросом: каким образом он формирует четыре связи в тетраэдрической конфигурации? В главе 11 обсуждались электронные конфигурации атомов (см. рис. 11.1). Углерод имеет шесть электронов: два на 1s– орбитали, два на 2s– орбитали и два на 2p– орбитали. Валентные электроны, то есть участвующие в образовании химических связей, — это 2s– и 2pэлектроны. В верхней части рис. 14.4 показаны энергетические уровни атомных орбиталей с заполняющими их четырьмя валентными электронами. 1s– электроны не показаны.

Рис. 14.4. Вверху: атомные валентные орбитали электрона с четырьмя валентными электронами. Внизу: при образовании химических связей атом углерода «повышает» 2s-электрон до уровня 2p, чтобы получить четыре неспаренных электрона для образования четырёх связей с другими атомами

Как отмечалось в главе 11 и ранее в этой главе, углерод образует четыре связи. В метане он создаёт четыре электронные пары, совместно используемые с четырьмя атомами водорода. Каждый атом H вкладывает один электрон. Поэтому углерод должен иметь четыре неспаренных электрона для образования этих связей. Каждый неспаренный электрон углерода может объединиться с одним электроном водорода и образовать связывающую пару электронов. Чтобы иметь четыре неспаренных электрона, углерод «поднимает» 2s– электрон на 2p– орбиталь, как это показано в нижней части рис. 14.4. У изолированного атома углерода такая конфигурация не возникает, если только не передать ему значительное количество энергии. Для атома углерода перемещение 2s– электрона на 2p– орбиталь — это переход к конфигурации с повышенной энергией. Однако в случае, когда атомы образуют молекулы, электроны и ядра различных атомов влияют друг на друга. Представьте себе четыре атома H, приближающихся к атому C. Теперь система стремится перейти в низшее энергетическое состояние для всех пяти атомов. Образование четырёх связей уменьшает эту энергию сильнее, чем её повышает переход 2s– электрона на 2p– орбиталь.

Гибридные атомные орбитали: линейные молекулы

Итак,

мы разобрались, каким образом углерод образует четыре связи, необходимые для молекулы метана. Но почему она имеет тетраэдрическую форму? Три 2p– орбитали — это px, py и pz. Эти три орбитали перпендикулярны друг другу, то есть для любой их пары угол между ними составляет 90°. Если бы три атома H были связаны с 2p– орбиталями, то угол между связями должен был составлять 90°. Далее, 2s– орбиталь сферическая. 1s– орбиталь четвёртого атома H должна была бы объединиться с углеродной 2s– орбиталью. Если бы больше ничего не происходило, то ясно, что использование 2s– орбитали и трёх 2p– орбиталей углерода не привело бы к появлению у метана четырёх совершенно идентичных C-H-связей в тетраэдрической конфигурации. Кроме того, каким образом углерод образует треугольную молекулу формальдегида или линейную молекулу углекислого газа O=C=O? Во всех этих конфигурациях — тетраэдрической, треугольной и линейной — углеродные связи задействуют всё те же 2s– и 2p– орбитали.

В формальдегиде и углекислом газе имеются двойные связи, которых мы вскоре коснёмся. Чтобы разобраться в важных свойствах атомных орбиталей, которые могут придавать молекулам линейную, треугольную или тетраэдрическую форму, мы рассмотрим химические связи в гидриде бериллия BeH2, боране BH3 и метане CH4. Бериллий и бор в молекулах BeH2 и BH3 не имеют замкнутой оболочки, как у инертного газа неона, поэтому они химически очень активны. Создать эти молекулы можно, но они будут реагировать буквально со всем, с чем вступают в контакт, образуя новые молекулы, в которых Be и B имеют замкнутые конфигурации оболочек. Здесь мы рассматриваем их лишь как удобные примеры.

Бериллий имеет два электрона сверх замкнутой электронной конфигурации гелия. У отдельного атома эти два электрона спарены на 2s– орбитали. Они являются валентными электронами бериллия. В молекуле BeH2 каждый атом H имеет по одному электрону на 1s– орбитали. Чтобы бериллий образовал две пары электронных связей, по одной для каждого атома H, он должен поднять один из 2s– электронов на 2p– орбиталь, которую мы примем за 2pz, как показано в верхней части рис. 14.5.

Рис. 14.5. Вверху: валентные электроны Be, один из которых перешёл на 2p z – орбиталь. Ниже: 2s- и 2p z – орбитали Be, показанные по отдельности. Ниже: сумма 2s- и 2p z – орбиталей даёт гибридную атомную орбиталь sp z+ . Ниже: разность 2s и 2p z – орбиталей даёт гибридную орбиталь sp z- . Внизу: две гибридные орбитали бериллия направлены в противоположные стороны вдоль оси z

Ниже на этом рисунке 2s- и 2pz– орбитали схематически показаны по отдельности. В действительности они имеют общий центр, совпадающий с ядром Be. Эти орбитали являются волнами амплитуды вероятности электрона. Волны могут складываться и вычитаться, порождая новые волны. Начнём с двух атомных орбиталей — 2s и 2pz; далее путём сложения и вычитания получим две новые атомные орбитали, называемые гибридными орбиталями. Когда волны складываются, получаются области конструктивной и деструктивной интерференции, поскольку лепестки волн амплитуды вероятности имеют знак. На третьем сверху изображении на рис. 14.5 показана сумма 2s– и 2pz– орбиталей. Она называется sp– гибридизированной орбиталью и обозначается spz+, поскольку является гибридом, полученным из s– орбитали и 2pz– орбитали, а её большой положительный лепесток направлен в положительную сторону оси z.

Поделиться:
Популярные книги

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Николай I Освободитель. Книга 2

Савинков Андрей Николаевич
2. Николай I
Фантастика:
героическая фантастика
альтернативная история
5.00
рейтинг книги
Николай I Освободитель. Книга 2

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Отдельный танковый

Берг Александр Анатольевич
1. Антиблицкриг
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Отдельный танковый