Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:
Математический результат, особенно если он неожиданный, тоже может послужить таким катализатором. Базовые элементы Стандартной модели (физики элементарных частиц) датируются серединой 1960-х годов, но имелись доводы (некоторые из них были выдвинуты создателями теории) о том, что её математические основания внутренне противоречивы. Затем в 1971 году молодой, никому не известный аспирант выполнил чрезвычайно сложные и тонкие вычисления и объявил, что эксперты ошибались. За очень короткое время Стандартная модель стала действительно стандартной, а неизвестный студент — Герард 'т Хоофт — стал в мире физики самой яркой звездой.
Другой пример того, как математика может качнуть весы в пользу сумасбродной идеи, — это расчёт Стивеном Хокингом температуры чёрной дыры. Первой реакцией на утверждение Бекенштейна о том, что чёрные дыры имеют энтропию, был скептицизм, доходящий до насмешек, в том числе со
Описанные мной переломные события имеют ряд общих особенностей. Во-первых, они были неожиданными. Совершенно непредвиденный результат, будь он экспериментальным или математическим, — это мощный концентратор внимания. Во-вторых, в случае математического результата, чем он более технический, точный, неинтуитивный и трудный, тем сильнее он толкает людей к признанию значения нового способа мышления. Отчасти причина в том, что в сложных вычислениях много мест, где может таиться ошибка. Трудно игнорировать случаи, когда этих опасностей удаётся избежать. Это можно отнести и к вычислениям ’т Хофта, и к вычислениям Хокинга.
В-третьих, парадигмы меняются, когда новые идеи создают другим исследователям обширное поле для более привычной работы. Физики всегда находятся в поисках новых идей, над которыми стоило бы поработать, и набрасываются на всё, что открывает возможности для проведения собственных исследований.
Дополнительность чёрных дыр и голографический принцип, безусловно, были неожиданными, даже шокирующими, но сами по себе они не обладали двумя другими свойствами, по крайней мере ещё не обладали. В 1994 году казалось, что вопрос об экспериментальном подтверждении голографического принципа не стоит даже обсуждать, равно как и возможность его убедительного математического обоснования. Но на деле и то и другое было ближе, чем кто-либо мог себе представить. Всего за два года начала обретать форму точная математическая теория, а спустя ещё десятилетие стала открываться возможность восхитительного экспериментального подтверждения [118] . И всё это благодаря теории струн.
118
См. главу 23.
Прежде чем перейти к более подробному рассказу о теории струн, позвольте мне обрисовать общую картину. Никто не знает наверняка, правильно ли теория струн описывает наш мир, и, возможно, мы ещё много лет этого не узнаем. Но для наших целей это не самый важный вопрос. У нас есть впечатляющие подтверждения того, что теория струн является математически непротиворечивой теорией некоего мира. Она основывается на принципах квантовой механики; она описывает систему элементарных частиц, подобных тем, что имеются в нашем мире; и в ней в отличие от других теорий (в первую очередь имеется в виду квантовая теория поля) все материальные объекты взаимодействуют посредством гравитационных сил. А самое главное, в теории струн есть чёрные дыры.
Но как с помощью теории струн доказывать какие-либо свойства нашего мира, если мы не уверены, что она верна? Для некоторых задач это не имеет значения. Мы используем теорию струн в качестве модели некоторого мира, а затем вычисляем или математически доказываем, теряется ли информация в чёрных дырах этого мира.
Допустим, мы обнаружили, что информация в нашей модели не теряется. Убедившись в этом, можно внимательнее присмотреться и понять, в чём же был неправ Хокинг. Можно попытаться понять, имеют ли место дополнительность чёрных дыр и голографический принцип в теории струн. Если да, то это не доказывает, что теория струн верна, но доказывает, что Хокинг ошибался, поскольку он объявил доказанным, что чёрные дыры должны уничтожать информацию в любом непротиворечивом мире.
Своё объяснение теории струн я намерен ограничить минимально необходимыми основами. Подробнее о ней можно узнать в целом ряде изданий, включая мою книгу «Космический ландшафт», а также книги Брайана Грина «Элегантная Вселенная» и Айзы Рэнделл «Закрученные пассажи» [119] . Теория струн была почти случайным открытием. Первоначально она не имела никакого отношения
119
Русские переводы последних двух книг: Брайан Грин. Элегантная Вселенная: суперструны, скрытые размерности и поиски окончательной теории. — Editorial URSS, 2008. Лиза Рэнделл. Закрученные пассажи: проникая в тайны скрытых размерностей пространства. — Либроком, Editorial URSS, 2011. — Прим. перев.
Элементарно, мой дорогой Ватсон
Есть старый анекдот о двух еврейских дамах, которые встретились на углу в Бруклине. Одна говорит другой: «Tы должна уже знать, что мой сын стал доктором. А между прочим, кем стал твой сын, у которого вечно были трудности с математикой?» Другая ей отвечает: «О, мой мальчик стал гарвардским профессором по физике элементарных частиц». Первая с сочувствием отвечает: «Да, дорогая, ужасно жаль, что он так и не дослужился до физики высших частиц».
Что в точности имеется в виду под элементарными частицами и какими они ещё могут быть? Простейший ответ: частица элементарна, если она столь мала и проста, что её нельзя разделить на меньшие части. Их противоположность — не высшие, а составные частицы — те, что состоят из более простых частей меньшего размера.
Редукционизм — это научная философия, которая приравнивает понимание к разбиранию вещей на части. До сих пор это очень хорошо работало. Молекулы объясняются как состоящие из атомов; в свою очередь атомы — это совокупности отрицательно заражённых электронов, обращающихся вокруг центрального положительно заряженного ядра; ядра оказались сгустками нуклонов; наконец, каждый нуклон состоит из трёх кварков. Сегодня все физики согласны, что молекулы, атомы, ядра и нуклоны — составные объекты.
Однако некоторое время назад каждый из них считался элементарным. В действительности термин «атом» происходит от греческого слова, означающего «неделимый», которое было в ходу около 2500 лет. Лишь недавно Эрнест Резерфорд открыл атомное ядро. Оно казалось настолько маленьким, что могло считаться просто точкой. Как видите, то, что одно поколение называет элементарным, потомки могут счесть составным.
Всё это поднимает вопрос о том, как мы решаем — по крайней мере в данный момент, — является некая частица элементарной или составной? Вот один из возможных ответов: столкните два таких объекта с достаточной силой и посмотрите, что разлетится. Если что-то вылетит, оно должно было находиться внутри одной из первоначальных частиц. В действительности, когда сталкиваются два очень быстрых электрона, во все стороны разлетается куча всевозможного мусора. Особенно много будет фотонов, электронов и позитронов [120] . Если столкновение очень сильное; то появятся также протоны, нейтроны и их античастицы [121] . И для полноты картины иногда может появиться целый атом. Означает ли это, что электроны состоят из атомов? Очевидно, нет. Столкновения с огромными энергиями помогают разобраться в свойствах частиц, но, оказывается, то, что при этом вылетает, не всегда позволяет судить, из чего эти частицы состоят.
120
Позитроны — антиматериальные близнецы электронов. Они имеют в точности такую же массу, как и электроны, но противоположный электрический заряд. У электронов заряд отрицательный, а у позитронов — положительный.
121
Все частицы имеют антиматериальных двойников с противоположными значениями электрического заряда и других подобных свойств. Так что существуют антипротоны, антинейтроны и античастицы электронов, называемые позитронами. Кварки — не исключение. Античастица кварка называется антикварком.