Большая книга занимательных наук
Шрифт:
Можно доказать строго геометрически, что чем больше сторон у правильного многоугольного участка, тем большую площадь заключает он при одной и той же длине границ. А самую большую площадь при данном периметре охватывает окружность. Если бы Пахом бежал по кругу, то, пробежав те же 40 верст, он получил бы площадь в 127 кв. верст.
Большей площадью при данном периметре не может обладать никакая другая фигура, безразлично – прямолинейная или криволинейная.
Легко доказать справедливость и такого положения: из всех фигур равной площади круг имеет наименьший периметр. Для этого нужно применить к кругу те рассуждения, которые мы раньше приложили
Гвозди
ЗАДАЧА
Какой гвоздь труднее вытащить – круглый, квадратный или треугольный, – если они забиты одинаково глубоко и имеют одинаковую площадь поперечного сечения?
РЕШЕНИЕ
Будем исходить из того, что крепче держится тот гвоздь, который соприкасается с окружающим материалом по большей поверхности. У какого же из наших гвоздей большая боковая поверхность? Мы уже знаем, что при равных площадях периметр квадрата меньше периметра треугольника, а окружность меньше периметра квадрата. Если сторону квадрата принять за единицу, то вычисление дает для этих трех величин значения: 4,53; 4; 3,55. Следовательно, крепче других должен держаться треугольный гвоздь.
Таких гвоздей, однако, не изготовляют, по крайней мере в продаже они не встречаются. Причина кроется, вероятно, в том, что подобные гвозди легче изгибаются и ломаются.
Тело наибольшего объема
Свойством, сходным со свойством круга, обладает и шаровая поверхность: она имеет наибольший объем при данной величине поверхности. И наоборот, из всех тел одинакового объема наименьшую поверхность имеет шар.
Эти свойства не лишены значения в практической жизни. Шарообразный самовар обладает меньшей поверхностью, чем цилиндрический или какой-либо иной формы, вмещающий столько же стаканов, а так как тело теряет теплоту только с поверхности, то шарообразный самовар остывает медленнее, чем всякий другой того же объема. Напротив, резервуар градусника быстрее нагревается и охлаждается (т. е. принимает температуру окружающих предметов), когда ему придают форму не шарика, а цилиндра.
По той же причине земной шар, состоящий из твердой оболочки и ядра, должен уменьшаться в объеме, т. е. сжиматься, уплотняться, от всех причин, изменяющих форму его поверхности: его внутреннему содержимому должно становиться тесно всякий раз, когда наружная его форма претерпевает какое-либо изменение, отклоняясь от шара. Возможно, что этот геометрический факт находится в связи с землетрясениями и вообще с тектоническими явлениями, но об этом должны иметь суждение геологи.
Из книги «Занимательная алгебра»
Пятое действие
Алгебру называют нередко «арифметикой семи действий», подчеркивая, что к четырем общеизвестным математическим операциям она присоединяет три новых: возведение в степень и два ему обратных действия.
Наши алгебраические беседы начнутся с «пятого действия» – возведения в степень.
Вызвана ли потребность в этом новом действии практической жизнью? Безусловно. Мы очень часто сталкиваемся с ним в реальной действительности. Вспомним о многочисленных случаях вычисления площадей и объемов, где обычно приходится возводить числа во вторую и третью степени. Далее: сила всемирного тяготения, электростатическое и магнитное взаимодействия, свет, звук ослабевают пропорционально второй степени
Не надо думать, что практика сталкивает нас только со вторыми и третьими степенями, а более высокие показатели существуют только в упражнениях алгебраических задачников. Инженер, производя расчеты на прочность, сплошь и рядом имеет дело с четвертыми степенями, а при других вычислениях (например, диаметра паропровода) – даже с шестой степенью. Исследуя силу, с какой текучая вода увлекает камни, гидротехник наталкивается на зависимость также шестой степени: если скорость течения в одной реке вчетверо больше, чем в другой, то быстрая река способна перекатывать по своему ложу камни в 46, т. е. в 4096 раз более тяжелые, чем медленная [58] .
58
Подробнее об этом см. в моей книге «Занимательная механика», глава девятая.
С еще более высокими степенями встречаемся мы, изучая зависимость яркости раскаленного тела – например, нити накала в электрической лампочке – от температуры. Общая яркость растет при белом калении с двенадцатой степенью температуры, а при красном – с тридцатой степенью температуры («абсолютной», т. е. считаемой от минус 273°). Это означает, что тело, нагретое, например, от 2000° до 4000° (абсолютных), т. е. в два раза сильнее, становится ярче в 212, иначе говоря, более чем в 4000 раз.
Астрономические числа
Никто, пожалуй, не пользуется так широко пятым математическим действием, как астрономы. Исследователям Вселенной на каждом шагу приходится встречаться с огромными числами, состоящими из одной-двух значащих цифр и длинного ряда нулей.
Изображение обычным образом подобных числовых исполинов, справедливо называемых «астрономическими числами», неизбежно вело бы к большим неудобствам, особенно при вычислениях. Расстояние, например, до туманности Андромеды, написанное обычным порядком, представляется таким числом километров:
95 000 000 000 000 000 000.
При выполнении астрономических расчетов приходится к тому же выражать зачастую небесные расстояния не в километрах или более крупных единицах, а в сантиметрах. Рассмотренное расстояние изобразится в этом случае числом, имеющим на пять нулей больше:
9 500 000 000 000 000 000 000 000.
Массы звезд выражаются еще большими числами, особенно если их выражать, как требуется для многих расчетов, в граммах. Масса нашего Солнца в граммах равна:
1 983 000 000 000 000 000 000 000 000 000 000.
Легко представить себе, как затруднительно было бы производить вычисления с такими громоздкими числами и как легко было бы при этом ошибиться. А ведь здесь приведены далеко еще не самые большие астрономические числа.
Пятое математическое действие дает вычислителям простой выход из этого затруднения. Единица, сопровождаемая рядом нулей, представляет собой определенную степень десяти:
100 = 102, 1000 = 103, 10 0 00 = 104 и т. д.
Приведенные раньше числовые великаны могут быть поэтому представлены в таком виде: