Чтение онлайн

на главную - закладки

Жанры

Большая книга занимательных наук
Шрифт:

100 k + 76.

Общее выражение для чисел, оканчивающихся этой группой цифр, таково:

1000а + 100А: + 76, 10006 + 100А: + 76 и т. д.

Перемножим два числа этого вида; получим:

1 000 000 ab + 100 000 ak + 100 000 bk + 76 000 a + 76 000 b + 10 000 k 2 + 15 200 k + 5776.

Все слагаемые, кроме двух последних, имеют на конце не менее трех нулей. Поэтому произведение оканчивается на 100£ + 76, если разность

15 200 k + 5776 – (100 k + 76) = 15 100 k + 5700 = 15 000 k + 5000 + 100

· ( k + 7)

делится на 1000. Это, очевидно, будет только при к= 3.

Итак, искомая группа цифр имеет вид 376. Поэтому и всякая степень числа 376 оканчивается на 376. Например:

3762= 14 1 376.

Если мы теперь захотим найти четырехзначную группу цифр, обладающую тем же свойством, то должны будем приписать к 376 еще одну цифру спереди. Если эту цифру обозначим через l , то придем к задаче: при каком l произведение

(10 000а + 1000 l + 376) · (10 000b + 1000 l + 376)

оканчивается на 1000 l + 376? Если в этом произведении раскрыть скобки и отбросить все слагаемые, которые оканчиваются на четыре нуля и более, то останутся члены

752 000 l + 141 376.

Произведение оканчивается на 1000 l + 376, если разность

752 000 l + 141 376 – (1000 l + 376) = 751 000 l + 141 000 = (750 000 l + 140 000) + 1000 · ( l + 1)

делится на 10 000. Это, очевидно, будет только при l = 9.

Искомая четырехзначная группа цифр 9376. Полученную четырехзначную группу цифр можно дополнить еще одной цифрой, для чего нужно рассуждать точно так же, как и выше. Мы получим 09 376. Проделав еще один шаг, найдем группу цифр 109 376, затем 7 109 376 и т. д.

Такое приписывание цифр слева можно производить неограниченное число раз. В результате мы получим «число», у которого бесконечно много цифр:

…7 109 376.

Подобные «числа» можно складывать и умножать по обычным правилам: ведь они записываются справа налево, а сложение и умножение («столбиком») также производятся справа налево, так что в сумме и произведении двух таких чисел можно вычислять одну цифру за другой – сколько угодно цифр.

Интересно, что написанное выше бесконечное «число» удовлетворяет, как это ни кажется невероятным, уравнению

х2 = х

В самом деле, квадрат этого «числа» (т. е. произведение его на себя) оканчивается на 76, так как каждый из сомножителей имеет на конце 76; по той же причине квадрат написанного «числа» оканчивается на 376; оканчивается на 9376 и т. д. Иначе говоря, вычисляя одну за другой цифры «числа» х2, где х =…7 109 376, мы будем получать те же цифры, которые имеются в числе х, так что х2 = х.

Мы рассмотрели группы цифр, оканчивающиеся на 76 [61] . Если аналогичные рассуждения провести для групп цифр, оканчивающихся на 5, то мы получим такие группы цифр:

5, 25, 625, 0625, 90 625, 890 625, 2 890 625 и т. д.

В результате мы сможем написать еще одно бесконечное «число»

…2 890 625,

также удовлетворяющее уравнению х2=х. Можно было бы показать, что это бесконечное «число» «равно»

61

Заметим,

что двузначная группа цифр 76 может быть найдена при помощи рассуждений, аналогичных приведенным выше: достаточно решить вопрос о том, какую цифру надо спереди приписать к цифре 6, чтобы полученная двузначная группа цифр обладала рассматриваемым свойством. Поэтому «число»…7 109 376 можно получить, приписывая спереди одну за другой цифры к шестерке.

Полученный интересный результат на языке бесконечных «чисел» формулируется так: уравнение х2 = х имеет (кроме обычныхх = 0 их = 1) два «бесконечных» решения:

x=…l 109 376 их =…2 890 625,

а других решений (в десятичной системе счисления) не имеет.

Пифагоровы числа

Удобный и очень точный способ, употребляемый землемерами для проведения на местности перпендикулярных линий, состоит в следующем. Пусть через точку А требуется к прямой MN провести перпендикуляр (рис. 1). Откладывают от А по направлению AM три раза какое-нибудь расстояние а. Затем завязывают на шнуре три узла, расстояния между которыми равны 4 а и 5а. Приложив крайние узлы к точкам А и В, натягивают шнур за средний узел. Шнур расположится треугольником, в котором угол А — прямой.

Рис. 1

Этот древний способ, по-видимому, применявшийся еще тысячелетия назад строителями египетских пирамид, основан на том, что каждый треугольник, стороны которого относятся, как 3:4:5, согласно общеизвестной теореме Пифагора, – прямоугольный, так как

32+ 42= 52.

Кроме чисел 3, 4, 5 существует, как известно, бесчисленное множество целых положительных чисел а, Ь, с, удовлетворяющих соотношению

а2 + Ь2 = с2.

Они называются пифагоровыми числами. Согласно теореме Пифагора такие числа могут служить длинами сторон некоторого прямоугольного треугольника; поэтому а и b называют «катетами», а с — «гипотенузой».

Ясно, что если а, Ь, с есть тройка пифагоровых чисел, то и pa, pb, рс, где р — целочисленный множитель, – пифагоровы числа. Обратно, если пифагоровы числа имеют общий множитель, то на этот общий множитель можно их все сократить, и снова получится тройка пифагоровых чисел…

Сто тысяч за доказательство теоремы

Одна задача из области неопределенных уравнений приобрела громкую известность, так как за правильное ее решение было завещано целое состояние: 100 000 немецких марок!

Задача состоит в том, чтобы доказать следующее положение, носящее название теоремы, или «великого предложения» Ферма.

Сумма одинаковых степеней двух целых чисел не может быть той же степенью какого-либо третьего целого числа. Исключение составляет лишь вторая степень, для которой это возможно.

Поделиться:
Популярные книги

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Бомбардировщики. Полная трилогия

Максимушкин Андрей Владимирович
Фантастика:
альтернативная история
6.89
рейтинг книги
Бомбардировщики. Полная трилогия

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Коллектив авторов
Warhammer Fantasy Battles
Фантастика:
фэнтези
5.00
рейтинг книги
Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

На границе империй. Том 2

INDIGO
2. Фортуна дама переменчивая
Фантастика:
космическая фантастика
7.35
рейтинг книги
На границе империй. Том 2

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

На границе империй. Том 8

INDIGO
12. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Светлая тьма. Советник

Шмаков Алексей Семенович
6. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Светлая тьма. Советник

Блуждающие огни

Панченко Андрей Алексеевич
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Начальник милиции. Книга 3

Дамиров Рафаэль
3. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 3