Большая Советская Энциклопедия (ДИ)
Шрифт:
Д. у. делятся на «обыкновенные», содержащие производные одной или нескольких функций одного независимого переменного, и «уравнения с частными производными», содержащие частные производные функций нескольких независимых переменных. Порядком Д. у. называется наибольший порядок входящих в него производных. Так, например,
есть Д. у. с частными производными 2-го порядка.
Обыкновенные дифференциальные уравнения. Уравнения 1-го порядка. Обыкновенным Д. у. 1-го порядка с одной неизвестной функцией (только такие пока будут рассматриваться) называется соотношение
F (x, у, у') = 0 (А)
между
Если уравнение (А) может быть разрешено относительно производной, то получается уравнение вида
y' = f (x, у). (Б)
Многие вопросы теории Д. у. проще рассматривать для таких разрешённых относительно производной уравнений, предполагая функцию f (x, y) однозначной.
Уравнение (Б) можно записать в виде соотношения между дифференциалами
f (x, y) dx– dy = 0,
тогда оно становится частным случаем уравнений вида
Р (х, у) dx + Q (x, у) dy = 0. (В)
В уравнениях вида (В) естественно считать переменные х и у равноправными, т. е. не интересоваться тем, какое из них является независимым.
Геометрическая интерпретация дифференциальных уравнений. Пусть у = у (х) есть решение уравнения (Б). Геометрически это значит, что в прямоугольных координатах касательная к кривой у = у (х) имеет в каждой лежащей на ней точке М (х, у) угловой коэффициент k = f (x, у). Т. о., нахождение решений у = у (х) геометрически сводится к такой задаче: в каждой точке некоторой области на плоскости задано «направление», требуется найти все кривые, которые в любой своей точке М имеют направление, заранее сопоставленное этой точке. Если функция f (x, у) непрерывна, то это направление меняется при перемещении точки М непрерывно, и можно наглядно изобразить поле направлений, проведя в достаточно большом числе достаточно густо расположенных по всей рассматриваемой области точек короткие чёрточки с заданным для этих точек направлением. На рис. 2 это выполнено для уравнения у' = у2. Рисунок позволяет сразу представить себе, как должны выглядеть графики решения — так называемые интегральные кривые Д. у. Вычисление показывает, что общее решение данного уравнения есть
На рис. 2 вычерчены интегральные кривые, соответствующие значениям параметра С = 0 и С = 1.
График любой однозначной функции у = у (х)
Пусть, например, задано уравнение
ydx + xdy = 0,
которое можно записать в виде
хотя, строго говоря, правая часть этого последнего уравнения теряет смысл при х = 0 и у = 0. Соответствующие поле направлений и семейство интегральных кривых, являющихся в этом случае окружностями х2 + у2 = С, изображены на рис. 3. Начало координат (х = 0, у = 0) — особая точка данного уравнения. Интегральными кривыми уравнения
ydx– xdy = 0,
изображёнными на рис. 4, являются всевозможные прямолинейные лучи, выходящие из начала координат; начало координат является особой точкой и этого уравнения.
Начальные условия. Геометрическая интерпретация Д. у. 1-го порядка приводит к мысли, что через каждую внутреннюю точку М области G с заданным непрерывным полем направлений можно провести одну вполне определённую интегральную кривую.
В отношении существования интегральной кривой сформулированная гипотеза оказывается правильной. Доказательство этого предложения принадлежит Дж. Пеано. В отношении же единственности интегральной кривой, проходящей через заданную точку, высказанная выше гипотеза оказывается, вообще говоря, ошибочной. Уже для такого простого уравнения, как
у которого правая часть непрерывна во всей плоскости, интегральные кривые имеют вид, изображённый на рис. 5. Единственность интегральной кривой, проходящей через заданную точку, нарушается здесь во всех точках оси Ox.
Единственность, т. е. однозначное определение интегральной кривой условием её прохождения через заданную точку, имеет место для уравнений (Б) с непрерывной правой частью при том дополнительном условии, что функция f (х, у) имеет в рассматриваемой области ограниченную производную по у.
Это требование является частным случаем следующего, несколько более широкого условия Липшица: существует такая постоянная L, что в рассматриваемой области всегда