Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (ВО)
Шрифт:

Лит.: История русского искусства, т. 10, кн. 2, М., 1969, с. 279—82.

Волнушка

Волну'шка (Lactarius torminosus), шляпочный гриб рода млечников. Шляпка 5—12 см в диаметре, у молодых В. плоская, затем воронковидная, розоватая, с красноватыми концентрическими зонами и волокнистым краем. Мякоть в свежем виде едкая на вкус. В. растёт обычно осенью в берёзовых и смешанных (с берёзой) лесах. Используется в пищу в засоленном виде после предварительного вымачивания или отваривания.

Волны

Во'лны, изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Например, удар по концу стального стержня вызывает

на этом конце местное сжатие, которое распространяется затем вдоль стержня со скоростью около 5 км/сек ; это — упругая В. Упругие В. существуют в твёрдых телах, жидкостях и газах. Звуковые В. (см. Звук ) и сейсмические волны в земной коре являются частными случаями упругих В. К электромагнитным волнам относятся радиоволны, свет, рентгеновские лучи и др. Основное свойство всех В., независимо от их природы, состоит в том, что в виде В. осуществляется перенос энергии без переноса вещества (последний может иметь место лишь как побочное явление). Например, после прохождения по поверхности жидкости В., возникшей от брошенного в воду камня, частицы жидкости останутся приблизительно в том же положении, что и до прохождения В.

Волновые процессы встречаются почти во всех областях физических явлений; изучение В. важно и для физики и для техники.

В. могут различаться по тому, как возмущения ориентированы относительно направления их распространения. Так, например, звуковая В. распространяется в газе в том же направлении, в каком происходит смещение частиц газа (рис. 1 , а), в В., распространяющейся вдоль струны, смещение точек струны происходит в направлении, перпендикулярном струне (рис. 1 , б). В. первого типа называются продольными, а второго—поперечными.

В жидкостях и газах упругие силы возникают только при сжатии и не возникают при сдвиге, поэтому упругие деформации в жидкостях и газах могут распространяться только в виде продольных В. («В. сжатия»). В твёрдых же телах, в которых упругие силы возникают также при сдвиге, упругие деформации могут распространяться не только в виде продольных В. («В. сжатия»), но и в виде поперечных В. («В. сдвига»). В твёрдых телах ограниченного размера (например, в стержнях, пластинках и т.п.) картина распространения В. более сложна, здесь возникают ещё и другие типы В., являющиеся комбинацией первых двух основных типов (подробнее см. Упругие волны ).

В электромагнитных В. направления электрического и магнитного полей почти всегда (за исключением некоторых случаев распространения в несвободном пространстве) перпендикулярны направлению распространения В., поэтому электромагнитные В. в свободном пространстве поперечны.

Общие характеристики и свойства В. В. могут иметь различный вид. Одиночной В., или импульсом, называется сравнительно короткое возмущение, не имеющее регулярного характера (рис. 2 , а). Ограниченный ряд повторяющихся возмущений называется цугом В. Обычно понятие цуга относят к отрезку синусоиды (рис. 2 , б). Особую важность в теории В. имеет представление о гармонической В., т. е. бесконечной и синусоидальной В., в которой все изменения состояния среды происходят по закону синуса или косинуса (рис. 2, в); такие В. могли бы распространяться в однородной среде (если амплитуда их невелика) без искажения формы (о В. большой амплитуды см. ниже). Понятие бесконечной синусоидальной В., разумеется, является абстракцией, применимой к достаточно длинному цугу синусоидальных волн.

Основными характеристиками гармонической В. являются длина В. — расстояние между двумя максимумами или минимумами возмущения (например, между соседними гребнями или впадинами на поверхности воды) и период В. Т — время, за которое частица среды совершает одно полное колебание. Таким образом, бесконечная В. обладает строгой периодичностью в пространстве (что обнаруживается в случае, например, упругих В., хотя бы на моментальной фотографии В.) и периодичностью во времени (что обнаруживается, если следить за движением во времени определённой частицы среды). Между длиной В. и периодом Т

имеется простое соотношение. Чтобы получить его, фиксируют внимание на частице, которая в данный момент времени находится на гребне В. После ухода от неё гребня она окажется во впадине, но через некоторое время, равное /с , где с — скорость распространения В., к ней подойдёт новый гребень, который в начальный момент времени был на расстоянии от неё, и частица окажется снова на гребне, как вначале. Этот процесс будет регулярно повторяться через промежутки времени, равные /с . Время /с совпадает с периодом колебания частицы Т , т. е. /с = Т. Это соотношение справедливо для гармонической В. любой природы.

Вместо периода Т часто пользуются частотой v, равной числу периодов в единицу времени: v = 1/Т. Между v и имеет место соотношение: v = с. (В технике обычно вместо v применяют обозначение f .) В теории В. пользуются также понятием волнового вектора, по абсолютной величине равного k = 2/ = 2v /c , т. е. равного числу В. на отрезке 2 и ориентированного в направлении распространения В.

Гармоническая В. Амплитуда и фаза. В гармонической В. изменения колеблющейся величины W во времени происходит по закону синуса (или косинуса) и описывается в каждой точке формулой: W = A sin 2t/T (см. Колебания ). Величина W в положении равновесия принята равной нулю. А — амплитуда В., т. е. значение, которое эта величина принимает при наибольших отклонениях от положения равновесия. В любой другой точке, расположенной на расстоянии r от первой в направлении распространения В., колебания происходят по такому же закону, но с запозданием на время t1 = r/c , что можно записать в виде:

W = A sin (2/T ) (tt1 ) = A sin (2/T ) (tr/c ).

Выражение (j = (2p/T ) (t- r/c ) называется фазой В. Разность фаз в двух точках r1 и r2 равна:

j2– j1 = (2p/Tc ) (r2r1 ) = (2p/l) (r2r1 ).

В точках, отстоящих друг от друга на целое число В., разность фаз составляет целое число 2p, т. е. колебания в этих точках протекают синхронно — в фазе. Наоборот, в точках, отстоящих друг от друга на нечётное число полуволн, т. е. для которых r2 r1 = (2N - 1)l/2, где N = 1, 2..., разность фаз равна нечётному числу p, т. е. j2 – j1 = (2N - 1)p. Колебания в таких точках происходят в противофазе: в то время, как отклонение в одной равно А , в другой оно обратно по знаку, т. е. равно — А и наоборот.

Поделиться:
Популярные книги

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Полуостров Надежды. Трилогия

Буторин Андрей Русланович
Вселенная Метро 2033
Фантастика:
боевая фантастика
постапокалипсис
8.00
рейтинг книги
Полуостров Надежды. Трилогия

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Часовой ключ

Щерба Наталья Васильевна
1. Часодеи
Фантастика:
фэнтези
9.36
рейтинг книги
Часовой ключ

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

Пророчество: Дитя Земли

Хэйдон Элизабет
2. Симфония веков
Фантастика:
фэнтези
7.33
рейтинг книги
Пророчество: Дитя Земли

Шесть тайных свиданий мисс Недотроги

Суббота Светлана
Любовные романы:
любовно-фантастические романы
эро литература
7.75
рейтинг книги
Шесть тайных свиданий мисс Недотроги

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Прорвемся, опера!

Киров Никита
1. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера!

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только