Большая Советская Энциклопедия (ВО)
Шрифт:
Лит.: Минералогия и геохимия вольфрамитовых месторождений, [Л.], 1967.
А. И. Гинзбург.
Вольфрамит
Вольфрами'т, минерал состава (Fe, Mn) [WO4 ], принадлежит к изоморфному ряду, крайними членами которого являются гюбнерит Mn [WO4 ] и ферберит Fe [WO4 ]. Содержит 74—76% WO3 . Характерны примеси MgO, Ta2 O5 , Nb2 O5 , ThO2 , Sc2 O3 . Содержание тантала и ниобия связано с изоморфной примесью, а чаще с мельчайшими включениями минералов группы колумбита. Кристаллизуется в моноклинной системе. Обычны
В. — главнейший рудный минерал, из которого добывается вольфрам. При высоких содержаниях в нём Sc и Ta они могут извлекаться попутно.
Лит.: Барабанов В. Ф., Минералогия вольфрамитовых месторождений Восточного Забайкалья, [т. 1], Л., 1961.
Вольфрамовые руды
Вольфра'мовые ру'ды, природные минеральные образования, содержащие вольфрам в количествах, при которых экономически целесообразно его извлечение. Основными минералами вольфрама являются вольфрамит, содержащий 74—76% WO3 , и шеелит — 80% WO3 . Минимальные содержания трёхокиси вольфрама, при которых рентабельно разрабатывать В. р. на современном уровне (1960—70) развития экономики и техники, для крупных месторождений порядка 0,14—0,15%, для более мелких жильных — 0,4—0,5%. В. р. часто содержат другие полезные компоненты (олово, молибден, бериллий, золото, медь, свинец и цинк). Кроме того, вольфрамиты некоторых месторождений содержат повышенные количества тантала и скандия, которые могут быть из них извлечены. Для получения концентратов с содержанием 50—60% WO3 руды обогащают, используя гравитационный, флотационный и другие методы обогащения.
Эндогенные месторождения вольфрама являются постмагматич., пневматолитовыми или гидротермальными и генетически связаны с гранитными интрузивами. Выделяют следующие главные типы месторождений В. р.: альбитизированные, грейзенизированные и окварцованные купола и штоки гранитов или гранит-порфиров, содержащие мелкую вкраплённость вольфрамита, иногда тонкие кварц-вольфрамитовые прожилки, образующие штокверк ; кварц-полевошпатовые, кварц-топазовые, кварц-флюоритовые и кварцевые жилы часто с грейзеновыми оторочками, содержащими вольфрамит, редко шеелит, касситерит, берилл, арсенопирит, висмутин, молибденит, пирит и другие сульфиды; кварц-шеелитовые жилы, минерализованные зоны и штокверки, содержащие часто сульфиды; кварц-золото-шеелитовые и кварц-антимонит-шеелитовые тела, содержащие ферберит, антимонит, киноварь, барит; шеелитсодержащие скарны, гранат-пироксен-скаполитового состава с молибденитом, халькопиритом, галенитом и сфалеритом. Наиболее богатыми являются месторождения жильного типа, нередко содержащие до нескольких процентов WO3 . Самыми крупными месторождениями являются скарновые и штокверковые. За счёт размыва коренных месторождений могут возникать делювиальные и аллювиальные россыпи, содержащие вольфрамит и шеелит.
Крупные месторождения В. р. имеются в СССР (Забайкалье, Средняя Азия, Казахстан, Приморье, Северо-Восток), КНР, КНДР. Среди капиталистических стран по запасам и добыче В. р. выделяются (добыча 1966, в т WO3 ): США (4852), Боливия (1580), Австралийский Союз (1326), Португалия (1199), Перу (437), Таиланд (336), Бирма (207).
Лит.: Быбочкин А. М., Месторождения вольфрама и закономерности их размещения, М., 1965; Минералогия и геохимия вольфрамовых месторождений, [Л.], 1967.
А. И. Гинзбург.
Вольфрамовые сплавы
Вольфра'мовые спла'вы, сплавы на основе вольфрама. Для легирования В. с. применяют металлы (Mo, Re, Cu, Ni, Ag и др.), окислы (ThO2 ), карбиды (TaC) и другие соединения, которые вводят в W для повышения его жаропрочности, пластичности (при температурах до 500°С), обрабатываемости, а также обеспечения необходимого комплекса физических свойств. В. с. получают методами порошковой металлургии или сплавлением компонентов в дуговых и электроннолучевых печах. В промышленности применяются главным образом металлокерамические В. с. По структуре различают 3
Основными В. с. с однофазной структурой твёрдого раствора являются сплавы W с Mo (до 50%) и Re (до 30%). При добавлении Mo повышается жаропрочность и электросопротивление сплава; кроме того, у сплавов W — Mo термический коэффициент расширения примерно такой же, как у различных сортов тугоплавкого стекла. Эти сплавы легче обрабатываются по сравнению с чистым W. В. с. с 20—50% Mo применяют в электровакуумных приборах для изготовления нагревателей, экранов и др. Рений в твёрдом растворе на основе W существенно повышает низкотемпературную пластичность и соответственно обрабатываемость. Максимальной пластичностью обладают В. с. с 20—28% Re. При дальнейшем увеличении содержания Re пластичность вновь начинает падать из-за выделения избыточной -фазы. Кроме повышенной пластичности, сплавы W — Re отличаются высокой жаропрочностью и большой термо-эдс в паре с W и между собой. Несмотря на дефицитность и дороговизну Re, эти сплавы в 50-х гг. начали использоваться в электровакуумных приборах (сплавы с 5—30% Re) и в качестве термопарных материалов, предназначенных для работы вплоть до 2500°С.
Искусственные дисперсные системы на основе W с 0,5—2% ThO2 и 0,3—0,5% TaC отличаются рекордно высокими температурами рекристаллизации (до 2000°С) и показателями жаропрочности (при 2200°С — в 2—3 раза большими, чем у нелегированного W). Кроме того, ThO2 улучшает эмиссионные характеристики сплава. Эти сплавы применяют в электровакуумных приборах, а также для изготовления некоторых деталей двигателей ракет и самолётов.
Псевдосплавы W с нерастворяющимися в нём Cu и Ag (вводимыми раздельно или вместе в количестве от 5 до 40%) имеют гетерогенную структуру, состоящую из зёрен W, окружённых прослойками Cu и Ag или их сплава. Эти материалы сочетают высокую твёрдость, жаропрочность, износостойкость, сопротивление электроэрозии, свойственные W, с хорошей электро- и теплопроводностью Cu и Ag. Из этих В. с. изготовляют электроконтакты. Вольфрам, пропитанный Ag и Cu, применяется и в других областях (например, как материал для сопел неохлаждаемых ракетных двигателей). Близкую к псевдосплавам W с Cu и Ag структуру имеют так называемые «тяжёлые сплавы» W с 3—10% Ni и 2—5% Cu. Их плотность после спекания спрессованных заготовок достигает 18 г/см3 . «Тяжёлые сплавы» используют в качестве материалов защиты от g-излучения в радиотерапии и при изготовлении контейнеров для хранения радиоактивных препаратов. Большая плотность «тяжёлых сплавов» позволяет применять их и в других областях — для изготовления роторов гироскопов, противовесов для самолётов и т.д.
Плавленые В. с., предназначаемые для производства крупногабаритных полуфабрикатов и изделий, работающих при температурах свыше 1500°С, пока не выпускаются в промышленных масштабах из-за технологических трудностей.
Разрабатываемые и осваиваемые плавленые В. с. представляют собой твёрдые растворы, дополнительно упрочнённые небольшим количеством дисперсных частиц карбидов (реже окислов и боридов). В качестве металлических добавок применяют Mo, Ta, Re, Zr, Nb, Ti. Первые три вводятся в количестве нескольких % и даже десятков %, а последние — в десятых долях %. Предельное количество легирующих элементов подбирают, исходя из минимально необходимой низкотемпературной пластичности. Перспективными В. с., сочетающими высокую жаропрочность с удовлетворительной низкотемпературной пластичностью, являются сплавы (содержащие добавки в % ): W+(1+10) Re+(1+10) Ta, W+25Mo+0, l,0,15Zr+0,05C, W+0,05,2Nb+0,001,0,02C. Двойной сплав W с 15% Mo предназначен для изготовления лопаток реактивных двигателей.
Лит.: Справочник по машиностроительным материалам, т. 2, М., 1959; Савицкий Е. М., Бурханов Г. С., Металловедение тугоплавких металлов и сплавов, М., 1967.
В. С. Золоторевский.
Вольфсбург
Во'льфсбург (Wolfsburg), город в ФРГ, в земле Нижняя Саксония. 84,6 тыс. жителей (1968). Центр автомобилестроения (около 45% всего производства автомобилей ФРГ). Автозавод фирмы «Фольксваген».
Вольфсон Семён Яковлевич
Вольфсо'н Семён Яковлевич (1894, Бобруйск, — 1941), советский философ, академик АН БССР (1928). Профессор Белорусского государственного университета (с 1921), с 1931 директор института философии и права АН БССР. Автор первого в СССР вузовского учебника «Диалектический материализм» (ч. 1—2, 1922, ч. 1—3, 6 изд., 1926). Работал также в области социологии.
Соч.: Плеханов, Минск, 1924; Интеллигенция как социально-экономическая категория, М. — Л., 1926; Социология брака и семьи, Минск. 1929; Сучасная рэлiгiйнасьць, Менск, 1930; Супроць расавых тэорый, Менск, 1935; Семья и брак в их историческом развитии, М., 1937.