Чтение онлайн

на главную - закладки

Жанры

Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим
Шрифт:

Истинная ценность данных — как айсберг в океане. На первый взгляд видна лишь незначительная часть, в то время как все остальное скрыто под водой. Инновационные компании, которые понимают это, могут извлечь скрытую ценность и получить потенциально огромные преимущества. Проще говоря, ценность данных необходимо рассматривать с точки зрения всех возможностей их дальнейшего использования, а не только нынешнего. Мы могли убедиться в этом на многих рассмотренных примерах. Компания Farecast анализировала данные о продаже авиабилетов, чтобы прогнозировать будущие цены на авиабилеты. Компания Google повторно применила условия поиска, чтобы узнать показатели распространения гриппа. Доктор Макгрегор собирала показатели жизненно важных функций младенцев, чтобы прогнозировать развитие инфекций. Мори многократно изучал старые капитанские журналы, чтобы выявить океанские течения.

И все-таки важность повторного применения данных недооценивается как в бизнесе,

так и в обществе. Мало кто из руководителей нью-йоркской компании Con Edison мог предположить, что информация о кабелях со времен 1800-х годов и записи о техническом обслуживании могут пригодиться для предотвращения будущих аварий. Потребовалось новое поколение статистиков, а также новое поколение методов и средств, чтобы высвободить эту скрытую ценность данных. До недавних пор даже многим технологическим и интернет-компаниям не было известно, насколько ценным бывает повторное использование данных.

Данные можно наглядно представить в виде энергии, как ее видят физики. Это хранящаяся, или потенциальная энергия, которая дремлет в каждом из объектов, будь то сжатая пружина или мяч на вершине пригорка. Энергия в этих объектах находится в скрытом (потенциальном) состоянии, пока не будет высвобождена (например, если отпустить пружину или подтолкнуть мяч, чтобы он покатился вниз). Тогда она становится кинетической, поскольку они движутся и прилагают силу к другим объектам физического мира. После первичного использования данных их ценность остается прежней, но только в «спящем» состоянии. Она сохраняет свой потенциал, как пружина или мяч, вплоть до вторичного применения, когда преимущества данных раскроются с новой силой. В эпоху больших данных у нас, наконец, есть все необходимое (мышление, изобретательность и инструменты), чтобы высвободить их скрытую ценность.

В конечном счете ценность данных заключается в том, что можно получить от их всестороннего использования. Эти, по-видимому бесконечные, возможности служат альтернативами, но не с точки зрения финансовых инструментов, а с точки зрения практических вариантов выбора. Стоимость данных определяется суммой таких вариантов — так сказать, «альтернативной ценностью» данных. Раньше, задействовав данные по основному назначению, мы, как правило, считали, что они свою миссию уже выполнили и теперь их можно окончательно удалить. Ведь, казалось бы, основная ценность получена. В эпоху больших данных все иначе: данные, как волшебный алмазный рудник, обеспечивают отдачу еще долго после того, как их номинальная ценность уже извлечена. Есть четыре мощных способа раскрыть альтернативную ценность данных: основное повторное использование, слияние наборов данных, поиск данных «2 в 1» и учет «амортизации» ценности данных.

Повторное использование данных

Классический пример инновационного повторного использования данных — условия поиска. На первый взгляд, информация становится бесполезной, как только ее первоначальное назначение достигнуто. Мгновенное взаимодействие между пользователем и поисковой системой приводит к подготовке списка сайтов и объявлений, тем самым выполняя определенную функцию, уникальную на тот конкретный момент. Но и старые запросы могут быть чрезвычайно полезными. Такие компании, как Hitwise, которая принадлежит брокеру данных Experian и занимается измерением веб-трафика, дают клиентам возможность проводить интеллектуальный анализ поискового трафика, чтобы выявить предпочтения потребителей. Маркетологи могут использовать Hitwise, чтобы узнать, какой цвет будет в моде этой весной — розовый или снова черный. Компания Google предоставляет пользователям открытый доступ к своей версии аналитики условий поиска. В сотрудничестве с BBVA, вторым по величине банком Испании, Google запустила службу бизнес-прогнозирования, чтобы анализировать сектор туризма и продавать в режиме реального времени экономические показатели, основанные на данных поиска. Банк Англии работает с поисковыми запросами, связанными с объектами недвижимости, чтобы уточнить тенденции роста или падения цен на жилье.

Компании, которые недооценили важность повторного использования данных, усвоили урок на собственном горьком опыте. В начале своей деятельности Amazon заключила сделку с компанией AOL по запуску технологии, лежащей в основе интернет-магазина AOL. Для большинства людей это выглядело как обычная сделка внешнего подряда. «Но что на самом деле интересовало Amazon, так это данные о том, что пользователи ищут и покупают, поскольку это позволило бы повысить эффективность рекомендательной системы компании», — поясняет Андреас Вайгенд, бывший руководитель исследовательских работ в Amazon. [99] Бедняжка AOL так этого и не поняла. Она видела преимущества только с точки зрения первичного использования — продаж, в то время как в Amazon смекнули, что можно извлечь выгоду из вторичного использования данных.

99

Amazon

и данные AOL: интервью Андреаса Вайгенда, 2010 год.

Или возьмем первые шаги Google в области распознавания речи. В 2007 году был запущен голосовой телефонный справочник GOOG-411, который функционировал вплоть до 2010 года. Поисковый гигант не имел своей технологии распознавания речи, поэтому пришлось ее лицензировать. Компания заключила договор с лидером в этой области — компанией Nuance, которая была рада обзавестись таким ценным клиентом. Но Nuance плохо разбиралась в том, что касалось больших данных: в договоре не уточнялось, кто является держателем записей голосового перевода, поэтому Google сохраняла их для себя. Эти данные были необходимы для совершенствования технологии, но также годились для создания новой службы распознавания речи с нуля. На тот момент Nuance воспринимала себя как организацию, которая занимается лицензированием программного обеспечения, а не обработкой данных. Осознав свою ошибку, компания начала заключать сделки с мобильными операторами и производителями мобильных телефонов для внедрения своей службы распознавания речи, что позволило и Nuance собирать данные. [100]

100

Программное обеспечение Nuance и Google: специальный отчет The Economist, 2010 год.

Ценность повторного использования данных — хорошая новость для организаций, которые собирают или имеют в своем распоряжении большие наборы данных, но пока с ними почти не работают (например, обычные компании, которые в основном функционируют вне интернета). Может оказаться, что они сидят на неиспользуемых информационных гейзерах. Некоторые компании, собрав данные и единожды их задействовав (а может, и не сделав этого вовсе), хранили данные лишь из-за низкой стоимости хранения. Ученые прозвали компьютеры с такой старой информацией «гробницами данных». Технологические и веб-компании стоят первыми в очереди по освоению наплыва данных, поскольку собирают огромное количество информации, просто находясь в интернете, и опережают конкурентов в отрасли по ее анализу. При этом все компании остаются в выигрыше. Консультанты McKinsey & Company приводят в пример логистическую компанию (ее название они оставили анонимным). Компания обратила внимание на то, что в процессе доставки товаров она накапливала огромные ряды информации о поставках в глобальном масштабе. Учуяв возможности, она создала специальный отдел по продаже объединенных данных в форме деловых и экономических прогнозов — иными словами, офлайновую версию прошлого бизнеса Google, построенного на поисковых запросах. [101]

101

Логистическая компания: Brown, Brad. Are you ready for the era of “big data”? / Brad Brown, Michael Chui, and James Manyika // McKinsey Quaterly. — October 2011. — P. 10.

Некоторые компании благодаря своему положению в цепочке создания ценности информации накапливают огромное количество данных, даже если не имеют в этом существенной необходимости или не практикуют их повторное использование. Так, например, операторы мобильной связи собирают информацию о местоположении своих абонентов, чтобы маршрутизировать их вызовы. Эти компании видят лишь узкое техническое назначение таких данных. Но их ценность значительно повышается при повторном использовании компаниями, которые распространяют персонализированную рекламу на основе местоположения. Иногда ценность формируют не отдельные точки данных, а их совокупность. Это дает возможность компаниям, таким как AirSage и Sense Networks, продавать информацию о том, где люди собираются по пятничным вечерам или насколько медленно ползут машины в пробках. Такая информация может служить для определения стоимости недвижимости или расценок для рекламных щитов.

Даже самая банальная информация может иметь особое значение, если направить ее в правильное русло. Вернемся к операторам мобильной связи: у них есть записи о том, где и когда телефоны подключались к базовым станциям, включая данные об уровне сигнала. Операторы уже давно используют эти сведения для тонкой настройки производительности своих сетей, решая, где добавить или обновить инфраструктуру. Но данные имеют и много других потенциальных применений. С их помощью производители телефонов могут узнать, например, что влияет на уровень сигнала, чтобы улучшить качество приема сигнала на своих устройствах. Мобильные операторы сталкиваются с большим количеством юридических ограничений, которые, как правило, запрещают повторное использование данных или обмен ими ввиду конфиденциальности — изобретения эпохи малых данных. Во времена больших данных такие ограничения уже неактуальны.

Поделиться:
Популярные книги

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Оцифрованный. Том 1

Дорничев Дмитрий
1. Линкор Михаил
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Оцифрованный. Том 1

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Голодные игры

Коллинз Сьюзен
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.48
рейтинг книги
Голодные игры

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Измена. Свадьба дракона

Белова Екатерина
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Измена. Свадьба дракона