Чтение онлайн

на главную - закладки

Жанры

Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Грин Брайан

Шрифт:

Целью статьи Эйнштейна-Подольского-Розена было показать, что квантовая механика, неоспоримо успешная в предсказаниях и объяснениях данных, не может быть последним словом в объяснении физики микромира. Их стратегия была проста и основывалась на простой постановке вопроса: они хотели показать, что каждая частица обладает определенным положением и определенной скоростью в любой данный момент времени, а отсюда они хотели обосновать заключение, что принцип неопределенности выражает фундаментальное ограничение на сам квантовомеханический подход. Если каждая частица имеет положение и скорость, но квантовая механика не может работать с этими свойствами реальности, тогда квантовая механика обеспечивает только частичное описание вселенной. Квантовая механика, хотели показать они, следовательно, является неполной теорией физической реальности и, вероятно, просто очередным этапом на пути к более глубокой схеме, которая, как ожидается, будет открыта. На самом деле, как мы увидим, они заложили основы для демонстрации кое-чего еще более потрясающего: нелокальности квантового мира.

Работа

Эйнштейна, Подольского и Розена (ЭПР) была частично инспирирована грубым объяснением принципа неопределенности, принадлежащим самому Гейзенбергу: когда вы измеряете, где находится что-либо, вы с необходимостью возмущаете его, при этом портите любую попытку одновременного определения его скорости. Хотя, как мы видели, квантовая неопределенность есть более общее понятие, чем указание на "возмущающую" трактовку, Эйнштейн, Подольский и Розен убедительно и хитроумно показали, что возникает в конце концов, если неаккуратно обращаться с любым источником неопределенности. Что если, предположили они, вы можете провести непрямое измерение как положения, так и скорости частицы способом, который никогда не приведет вас в контакт с самой частицей? Например, используя классическую аналогию, представим, что Род и Тодд Фландерс приняли решение предпринять важное одинокое путешествие по заново созданной Спрингфилдовской ядерной пустыне. Они стартовали спина к спине из центра пустыни и договорились шагать прямо в противоположных направлениях с точно одинаковой, оговоренной заранее скоростью. Представим далее, что девятью часами позже их отец, Нэд, возвращаясь после своего восхождения на Пик Спрингфилда, и поймав глазами Рода, побежал к нему и безнадежно спросил о местонахождении Тодда. К этому времени Тодд ушел далеко, но расспросив Рода и наблюдая его, Нэд, тем не менее, смог узнать многое о Тодде. Если Род находится точно в 45 милях к востоку от стартовой точки, Тодд должен находиться точно в 45 милях к западу от нее. Если Род шагает со скоростью точно 5 миль в час на восток, Тодд должен шагать точно со скоростью 5 миль в час на запад. Так что, хотя Тодд удален примерно на 90 миль, Нэд может определить его положение и скорость, хотя и косвенно.

Эйнштейн и его коллеги применили похожую стратегию к квантовой сфере. Имеются хорошо известные физические процессы, при которых две частицы испускаются из одного места со свойствами, которые соотносятся примерно таким же образом, как движение Рода и Тодда. Например, если начальная единая частица распадается на две частицы одинаковой массы, которые разлетаются "спина к спине" (подобно тому как взрыв выбрасывает два осколка в противоположных направлениях), будет нечто, что является общим в области физики субатомных частиц, а именно, скорости двух составляющих будут равны и противоположны. Более того, положения двух составляющих частиц будут также тесно связаны и, для простоты, частицы могут мыслиться как всегда находящиеся на одинаковом расстоянии от их места рождения.

Важное отличие между классическим примером с Родом и Тоддом и квантовым описанием двух частиц заключается в том, что, хотя мы можем сказать с определенностью, что тут имеется четкая взаимосвязь между скоростями двух частиц, – если одна измерена и найдена движущейся влево с данной скоростью, то вторая будет с необходимостью двигаться вправо с той же скоростью, – мы не можем предсказать действительную численную величину скорости, с которой частицы движутся. Вместо этого, лучшее, что мы можем сделать, это использовать законы квантовой физики, чтобы предсказать вероятность, что одной из частиц достигнута любая определенная скорость. Аналогично, в то время как мы можем сказать с определенностью, что имеется четкая связь между положениям частиц, – если положение одной измерено в данный момент и найдено соответствующим некоторой точке, положение другой с необходимостью будет на том же расстоянии от точки старта, но в противоположном направлении, – мы не можем предсказать с определенностью действительное положение каждой частицы. Вместо этого, лучшее, что мы можем сделать, это предсказать вероятность, что одна из частиц находится в любом выбранном положении. Таким образом, квантовая механика не дает определенных ответов по поводу скоростей или положений частиц, она дает в определенной ситуации четкие указания по поводу соотношений между скоростями и положениями частиц.

Эйнштейн, Подольский и Розен попытались использовать эти соотношения, чтобы показать, что каждая из частиц на самом деле имеет определенное положение и определенную скорость в любой заданный момент времени. Это делалось так: представим, что вы измеряете положение летящей направо частицы и, таким образом, косвенно получаете положение летящей налево частицы. ЭПР утверждают, что поскольку вы ничего, абсолютно ничего не делали с летящей налево частицей, она должна иметь это положение, и все, что вы сделали, определяет его, хотя и косвенно. Тогда ЭПР остроумно замечают, что вы могли вместо этого выбрать измерение скорости летящей направо частицы. В этом случае вы косвенно получите определение скорости летящей налево частицы, без какого-либо ее возмущения. И опять, утверждают ЭПР, поскольку вы ничего, абсолютно ничего не делали с летящей налево частицей, она долна иметь именно эту скорость, и все, что вы сделали, определяет эту скорость. Объединяя оба случая вместе – измерение, которое вы сделали, и измерение, которое вы могли бы сделать, – ЭПР заключают, что летящая налево частица имеет определенное положение и определенную скорость в любой заданный момент времени.

Поскольку это тонко и критически важно, позволю себе повторить еще раз. ЭПР доказывают, что

ничто в вашем акте измерения летящей направо частицы не может оказать никакого воздействия на летящую налево частицу, поскольку они суть отдельные и разделенные расстоянием сущности. Летящая налево частица полностью не имеет понятия о том, что вы делаете или можете сделать с летящей направо частицей. Между частицами могут быть метры, километры или световые годы, когда вы проделываете ваши измерения над летящей направо частицей, так что, коротко, летящая налево частица может не беспокоиться о том, что вы делаете. Поэтому любое свойство, которое вы сейчас изучаете или можете изучать в принципе по поводу летящей налево частицы путем исследования ее летящего направо дубликата, должно быть определенным, существующим свойством летящей налево частицы, полностью независимым от ваших измерений. А поскольку, если вы измеряете положение правой частицы, вы получите знание о положении левой частицы, а если вы измеряете скорость правой частицы, вы получите знание о скорости левой частицы, должно быть так, что летящая налево частица на самом деле имеет определенные как положение, так и скорость. Конечно, эта дискуссия полностью может быть проведена и в том случае, если поменять ролями летящие налево и летящие направо частицы (и, фактически, до проведения измерения мы даже не можем сказать, какая частица летит налево, а какая направо); это приводит к заключению, что обе частицы имеют определенные положения и скорости.

Следовательно, заключают ЭПР, квантовая механика есть неполное описание реальности. Частицы имеют определенные положения и скорости, но квантовомеханический принцип неопределенности показывает, что эти свойства реальности находятся вне границ действия теории. Если в соответствии со сказанным и вместе с большинством других физиков вы верите, что полная теория природы должна описывать каждый атрибут реальности, отказ квантовой механики описывать одновременно положения и скорости частиц означает, что она пропускает некоторые существенные черты реальности и, следовательно, не является полной теорией; она не является последним словом. Это то, что решительно отстаивали Эйнштейн, Подольский и Розен.

Квантовый ответ

Когда ЭПР приходили к заключению, что каждая частица имеет определенное положение и скорость в любой заданный момент времени, отметим, что если вы проследуете по их процедуре, вы упустите действительное определение указанных атрибутов. Я говорил выше, что вы могли бы выбрать измерение скорости летящей направо частицы. Если вы сделаете это, вы внесете возмущение в ее положение; с другой стороны, если вы выберете измерение ее положения, вы исказите ее скорость. Если же вы не имеете обоих этих атрибутов летящей направо частицы в руках, вы не имеете их обоих и для летящей налево частицы. Так что тут нет противоречия с принципом неопределенности: Эйнштейн и его сотрудники полностью отдавали себе отчет, что так одновременно определить положение и скорость любой данной частицы нельзя. Однако, и в этом соль, даже без одновременного определения положения и скорости обеих частиц, аргументы ЭПР показывают, что каждая имеет определенное положение и скорость. Для них это был вопрос реальности. Для них теория не может претендовать на полноту, если имеются элементы реальности, которые она не описывает.

После небольшой интеллектуальной суеты в ответ на это неожиданное наблюдение, защитники квантовой механики успокоились на своем обычном прагматическом подходе, хорошо обобщенном выдающимся физиком Вольфгангом Паули: "Напрягать ум по поводу проблемы, существует ли нечто, о чем никто не может ничего знать, нужно не в большей степени, чем по поводу античного вопроса, сколько ангелов можно посадить на острие иглы". [9] Физика в целом и квантовая механика в частности могут иметь дело только с измеряемыми свойствами вселенной. Все другое просто находится вне сферы физики. Если вы не можете измерить одновременно положение и скорость частицы, то нет смысла и разговаривать о том, имеет ли она одновременно положение и скорость.

9. Irene Born, trans., The Born-Einstein Letters (New York: Walker, 1971), p. 223.

ЭПР с этим не согласны. Реальность, утверждали они, есть нечто большее, чем показания детекторов; она есть нечто большее, чем полная совокупность всех наблюдений в данный момент. Они верили, что когда совсем никто, абсолютно никто, ни прибор, ни устройство, ни что-нибудь еще "не смотрит" на Луну, Луна все еще там. Они верили, что Луна все еще остается частью реальности.

В известном смысле это выступление перекликается с дебатами между Ньютоном и Лейбницем по поводу реальности пространства. Может ли нечто рассматриваться как реальное, если мы не можем в действительности потрогать его, или увидеть его или каким-либо образом измерить его? В главе 2 описывалось, как ньютоновское ведро изменило характер споров о пространстве, внезапно предположив, что влияние пространства должно наблюдаться непосредственно в искривленной поверхности вращающейся воды. В 1964 году одним ошеломляющим ударом, который один комментатор назвал "самым глубоким открытием науки", [10] ирландский физик Джон Белл сделал то же самое для споров о квантовой реальности.

10. Henry Stapp, Nuovo Cimento 40B (1977), 191-204.

Поделиться:
Популярные книги

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Жена неверного маршала, или Пиццерия попаданки

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного маршала, или Пиццерия попаданки

Надуй щеки! Том 2

Вишневский Сергей Викторович
2. Чеболь за партой
Фантастика:
попаданцы
дорама
фантастика: прочее
5.00
рейтинг книги
Надуй щеки! Том 2

Жена на пробу, или Хозяйка проклятого замка

Васина Илана
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Жена на пробу, или Хозяйка проклятого замка

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Ни слова, господин министр!

Варварова Наталья
1. Директрисы
Фантастика:
фэнтези
5.00
рейтинг книги
Ни слова, господин министр!

По дороге на Оюту

Лунёва Мария
Фантастика:
космическая фантастика
8.67
рейтинг книги
По дороге на Оюту

(Не) моя ДНК

Рымарь Диана
6. Сапфировые истории
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
(Не) моя ДНК

Газлайтер. Том 17

Володин Григорий Григорьевич
17. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 17

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец