Брайан Грин. Ткань космоса: Пространство, время и структура реальности
Шрифт:
За последние восемьдесят лет повсеместное распространение и полезность квантовомеханических вероятностных волн для предсказания и объяснения экспериментальных результатов установились вне всяких сомнений. Хотя тут есть все еще не универсальный, основанный на соглашении способ рассмотрения, что же в действительности представляют из себя квантовомеханические волны вероятности. Должны ли мы сказать, что электронная волна вероятности и есть электрон, или что она связана с электроном, или что она есть математическая конструкция для описания движения электрона, или что она есть реализация того, чего мы можем знать об электроне, все еще обсуждается. Хотя ясно, что через эти волны квантовая механика вводит вероятности в законы физики способом, который никто не мог предвидеть. Метеорологи используют вероятности, чтобы предсказать возможность дождя. Казино используют вероятности, чтобы предсказать вам возможность во время игры в кости выбросить "глаза змеи". Но вероятность играет роль в этих примерах постольку, поскольку мы не имеем полной информации, необходимой, чтобы сделать определенные предсказания.
Вероятность, введенная квантовой механикой, носит иной, более фундаментальный характер. Безотносительно к усовершенствованиям в системах сбора данных или в мощности компьютеров, лучшее, что мы только можем сделать в соответствии с квантовой механикой, это предсказать вероятность того или иного исхода. Лучшее, что мы только можем сделать, это предсказать вероятность, что электрон, или протон, или нейтрон, или любая другая составная часть природы будет найдена здесь или там. Вероятность властвует верховно в микрокосмосе.
В качестве примера, объяснение, которое дает квантовая механика для отдельных электронов, которые один за одним с течением времени выстраивают картинку из светлых и темных полос на Рис. 4.4, теперь ясно. Когда электрон испускается, его вероятностная волна проходит через обе щели. И точно так же, как со световыми волнами и водяными волнами, вероятностные волны, истекая из двух щелей, интерферируют друг с другом. На некоторой точке детектирующего экрана две вероятностные волны усиливаются и результирующая интенсивность велика. В другой точке волны частично гасятся и интенсивность мала. В некоторых точках гребни и впадины вероятностных волн полностью гасятся и результирующая интенсивность волны в точности равна нулю. Так что на экране есть точки, куда очень вероятно попадет электрон, точки, где намного менее вероятно, что туда прилетит электрон, и точки, где совсем нет шансов, что электрон туда попадет. С течением времени электроны попадают в места, которые распределены в соответствии с этим вероятностным профилем, и поэтому мы получаем некоторые яркие, некоторые более серые, а некоторые совсем темные области на экране. Детальный анализ показывает, что эти светлые и темные области будут выглядеть в точности как на Рис. 4.4.
Эйнштейн и квантовая механика
Из-за своей неотъемлемой вероятностной природы квантовая механика резко отличается от любого более раннего фундаментального описания вселенной, качественного или количественного. С момента ее зарождения за последнее столетие физики старались соединить эту странную и неожиданную систему с общепринятыми взглядами на мир; эти попытки все еще на полном ходу. Проблема лежит в согласовании макроскопического опыта повседневной жизни с микроскопической реальностью, обнаруженной квантовой механикой. Для жизни в этом мире мы пользуемся тем, что, хотя допустимо подвергаться бредовым идеям экономического и политического происхождения, по крайней мере, пока речь идет о его физических свойствах, проявляется стабильность и надежность. Вас не беспокоит, что атомные составляющие воздуха, который вы сейчас вдыхаете, внезапно рассеются, оставив вас хватать ртом воздух, когда они проявят свои квантовые волноподобные свойства путем рематериализации, скажем, на обратной стороне Луны. И вы правы, не беспокоясь о таком исходе, поскольку согласно квантовой механике вероятность такого исхода, хотя и не нуль, но до смешного мала. Но что делает вероятность столь малой?
Грубо говоря, тому есть две причины. Первая: по шкале атомных расстояний Луна чудовищно далека. И, как упоминалось, во многих случаях (хотя и не во всех) квантовые уравнения показывают, что вероятностная волна обычно имеет заметную величину в некоторой малой области пространства и быстро спадает почти до нуля, как только вы удаляетесь от этой области (как на Рис. 4.5). Так вероятность того, что даже отдельный электрон, который вы ожидаете найти в том же помещении, что и вы, – как один из тех, что вы просто выдыхаете, – будет найден на секунду или две на обратной стороне Луны, хотя и не нуль, но экстремально мала. Так мала, что вероятность того, что вы заключите брак с Николь Кидман или Антонио Бандерасом, будет в сравнении казаться огромной. Вторая: имеется уйма электронов, так же как и протонов и нейтронов, формирующих воздух в вашей комнате. Вероятность того, что все эти частицы сделают то, что экстремально маловероятно даже для одной из них, настолько мала, что ее тяжело оценить мимолетной мыслью. Это будет подобно не только женитьбе на вызывающей у вас сердечный трепет кинозвезде, но также и выигрышу каждую неделю каждой из проводимых лотерей, для чего потребуется промежуток времени, по сравнению с которым текущий возраст вселенной покажется лишь космическим мгновением.
Это придает определенный смысл тому, почему мы непосредственно не сталкиваемся с вероятностными аспектами квантовой механики в повседневной
В течение многих лет Эйнштейн выпускал серии все более изощренных вопросов, имеющих целью вскрыть пробелы в структуре квантовой механики. Один из таких вопросов, озвученный в 1927 году на 5-й физической конференции Сольвеевского института, [8] содержал факт, что даже если вероятностная волна электрона может выглядеть как на Рис. 4.5, когда бы мы не измерили местонахождение электрона, мы всегда найдем его в том или ином определенном положении. Но, спрашивал Эйнштейн, не значит ли это, что вероятностная волна есть просто временное приближение для более точного описания, – которое еще предстоит открыть, – которое будет предсказывать положение электрона с определенностью? В конце концов, если электрон найден в точке Х, не означает ли это в действительности, что он был в точке Х или очень близко в момент времени перед тем, как измерение было завершено? А если так, подталкивал Эйнштейн, не означает ли это, что уверенность квантовой механики в вероятностной волне – волне, которая в этом примере говорит, что электрон имел некоторую вероятность находится далеко от точки Х, – свидетельствует о неадекватности теории для описания правильной лежащей в основе всего реальности?
8. Institut International de Physique Solvay, Rapport et discussions du 5-e Conseil (Paris, 1928), pp. 253ff.
Позиция Эйнштейна проста и убедительна. Что может быть более естественным, чем ожидать, что частица будут находиться в месте или, в самом крайнем случае, близко от места, где она найдена моментом позже? Если это так, то более глубокое понимание физики должно обеспечить эту информацию и обойтись без грубой схемы вероятностей. Но датский физик Нильс Бор и его окружение из защитников квантовой механики были не согласны. Подобные аргументы, утверждали они, проистекают из традиционного мышления, в соответствии с которым каждый электрон следует отдельной определенной траектории, по которой он путешествует туда и сюда. А эта мысль полностью противоречит Рис. 4.4, так как если каждый электрон следует по определенной траектории – подобно классическому образу пули, выпущенной из пистолета, – будет экстремально тяжело объяснить наблюдаемую интерференционную картину: что с чем будет интерферировать? Отдельные пули, выстреливаемые одна за одной из отдельного пистолета определенно не могут интерферировать друг с другом, так что если электрон летит как пуля, как мы будем объяснять картину на Рис. 4.4?
Вместо этого, согласно Бору и Копенгагенской интерпретации квантовой механики, которую он убедительно отстаивал, до того, как кто-нибудь измерит положение электрона, не имеет смысла даже спрашивать, где он. Он не имеет определенного положения. Вероятностная волна шифрует возможность того, что электрон, когда он будет подходящим образом исследован, будет найден здесь или там, и это в полном смысле слова все, что можно сказать о его положении. Пауза. Электрон имеет определенное положение в обычном интуитивном смысле только в момент, когда мы "смотрим" на него – в момент, когда мы измеряем его положение, – идентифицируя его локализацию с определенностью. Но до (и после) этого мы должны принять, что все, что электрон имеет, это потенциальное положение, описываемое вероятностной волной, которая, как и всякая волна, подвержена интерференционным эффектам. Это не то, что электрон имеет положение и мы не знаем этого положения, пока мы не проведем наше измерение. Точнее, вопреки тому, что вы ожидали, электрон просто не имеет определенного положения перед тем, как измерение проведено.
Это предельно странная реальность. С этой точки зрения, когда мы измеряем положение электрона, мы не измеряем объективное, существующее заранее свойство реальности. Скорее, акт измерения глубоко вмешивается в создание самой реальности, которая измеряется. Перенеся это от электронов на повседневную жизнь, Эйнштейн саркастически заметил: "Вы действительно верите, что Луна не здесь, пока мы не посмотрим на нее?" Адепты квантовой механики отреагировали версией старой байки про дерево, упавшее в лесу: если никто не смотрит на Луну, – если никто не "измеряет ее положение путем разглядывания ее", – то для нас нет способа узнать, там ли она, так что нет смысла и задавать этот вопрос. Эйнштейн нашел это в высшей степени неудовлетворительным. Это было дикое расхождение с его концепцией реальности; он твердо верил, что Луна здесь, смотрит на нее кто-нибудь или нет. Но приверженцы квантовой механики остались при своих убеждениях.