Чтение онлайн

на главную - закладки

Жанры

Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Грин Брайан

Шрифт:

Но когда вы откручиваете крышку бутылки или удаляете барьер, вы открываете целую новую вселенную для молекул газа, и через столкновения и соударения они быстро рассеиваются, чтобы эту вселенную "исследовать". Почему? По тем же самым статистическим причинам, как и в случае страниц Войны и мира. Нет сомнений, что некоторые из соударений будут приводить несколько молекул газа точно внутрь исходного пузыря газа или подтолкнут несколько молекул, которые вернулись назад в пузырь, в сторону облака газа исходной плотности.

(*)"Энтропия есть еще один пример, в котором терминология усложняет идеи. Не расстраивайтесь, если вы опять себе напомнили, что низкая энтропия означает высокий порядок, а высокая энтропия означает низкий порядок (эквивалентно, высокий беспорядок). Я много раз так делал." 

 Но, поскольку объем комнаты превышает объем исходного облака газа, имеется граздо больше перестановок, приемлемых для молекул, если они рассеиваются из облака, чем для молекул, если они остаются в облаке. Тогда в среднем молекулы газа будут расплываться из исходного облака и медленно достигнут состояния, когда они однородно распределены по комнате. Так что относительно низкоэнтропйная исходная конфигурация, в которой весь газ собран в кучу в малой области, естественным образом эволюционирует в направлении относительно

высокоэнтропийной конфигурации, в которой газ однородно распространен в большем пространстве. И однажды достигнув такой однородности, газ будет иметь тенденцию поддерживать это состояние высокой энтропии: столкновения и соударения все еще заставляют молекулы двигаться туда и сюда, вызывая замену одной перестановки на другую, но подавляющим образом превалируют такие перестановки, которые не влияют на макроскопические, всеобъемлющие свойства газа. Это и означает иметь высокую энтропию. [9]

9. Вы можете обеспокоиться, что имеется фундаментальное отличие между определением понятия энтропия для расположений страниц и определения его для коллективов молекул. Так расположения страниц дискретны – вы можете пересчитать их одно за одним, так что, хотя полное число возможностей может быть большим, оно конечно. В противоположность этому, движение и положение даже отдельной молекулы непрерывно – вы не можете пересчитать их одно за одним, так что тут (по крайней мере, в соответствии с классической физикой) имеется бесконечное число возможностей. Так как можно точно провести оценку молекулярных перестановок? Ну, короткий ответ состоит в том, что это хороший вопрос, но один из тех, на которые найдены полные ответы, – так что, если этого достаточно, чтобы успокоить вашу тревогу, свободно пропускайте следующий текст. Более длинный ответ требует немного математики, так что без знания основ это может быть тяжело проследить полностью. Физики описывают классическую многочастичную систему, привлекая фазовое пространство, 6N-мерное пространство (где N есть число частиц), в котором каждая точка обозначает все положения и скорости частиц (каждое такое положение требует три числа, что относится и к каждой скорости, в итоге получаем 6N-мерность фазового пространства). Существенный момент тот, что фазовое пространство может быть разбито на такие области, что все точки данной области соответствуют перестановкам скоростей и координат молекул, которые имеют одинаковые в общем и целом макроскопические свойства и вид. Если конфигурация молекул изменилась от одной точки в данной области фазового пространства к другой точке той же области, макроскопические оценки найдут эти две конфигурации неразличимыми. Теперь, вместо того, чтобы пересчитывать число точек в данном регионе – самая прямая аналогия подсчета числа различных перестановок страниц, но которая, несомненно, приведет к бесконечному ответу, – физики определяют энтропию в терминах объема каждой области в фазовом пространстве. Больший объем означает больше точек, а потому больше энтропия. А объем области, даже области в многомерном пространстве, есть нечто, чему можно дать строгое математическое определение. (Математически необходимо выбрать нечто, именуемое мерой, и, для склонного к математике читателя, я замечу, что мы обычно выбираем меру, которая однородна по всем микросостояниям, совместимым с данным макросостоянием, – что означает, каждая микроскопическая конфигурация, связанная с данным выбором макроскопических свойств, предполагается равновероятной).

В принципе, как и со страницами Войны и мира, мы можем использовать законы классической физики, чтобы точно определить, где в данный момент времени будет находиться каждая молекула углекислого газа. Но вследствие чудовищного числа молекул СО2 – около 1024 в бутылке колы – в действительности провести такие вычисления практически невозможно. И даже если каим-то образом мы были бы в состоянии сделать это, обладание списком из миллионов миллиардов миллиардов положений и скоростей частиц будет почти ничего не давать нам в смысле того, как молекулы распределены. Концентрация внимания на крупномасштабных статистических свойствах – рассеялся газ или собрался вместе, что означает, имеет он высокую или низкую энтропию – намного более информативна.

Энтропия, второй закон и стрела времени

Тенденция физической системы эволюционировать в направлении состояния с более высокой энтропией известна как второй закон термодинамики. (Первый закон есть привычный закон сохранения энергии). Как отмечено выше, основанием для закона является простое статистическое рассуждение: имеется больше способов для системы иметь более высокую энтропию, и "больше способов" означает, что более вероятным является то, что система будет эволюционировать в одну из этих высокоэнтропийных конфигураций. Хотя отметим, что это не есть закон в обычном смысле, поскольку, хотя такие случаи редки и маловероятны, нечто может уйти из состояния с высокой энтропией в состояние с низкой. Когда вы подбрасываете в воздух перепутанную пачку страниц, а затем собираете ее в аккуратную стопку, может произойти возврат в правильный числовой порядок. Вы не захотите заключить пари на большую сумму, что это произойдет, но это возможно. Возможно также, что столкновения и соударения просто приведут к тому,что весь рассеянный углекислый газ будет двигаться согласованно и втянется назад в вашу открытую бутылку колы. Не надо, затаив дыхание, ожидать и такого исхода тоже, но он может произойти. [10]

10. Особенно, мы знаем один путь, на котором это должно произойти: если несколькими днями ранее молекулы СО2 первоначально были в бутылке, тогда мы знаем из нашего обсуждения выше, что если прямо сейчас вы одновременно замените на противоположные скорости всех и каждой молекулы СО2, также каждой молекулы или атома, которые любым образом взаимодействовали с молекулами СО2, и подождете те же несколько дней, молекулы соберутся все назад вместе в бутылку. Но это обращение скорости не та вещь, которую можно исполнить на практике, не считая того, что это, возможно, произойдет по их собственному согласию. Я должен заметить, что было доказано математически, что если вы ждете достаточно долго, молекулы СО2 по своей собственной воле все найдут свой путь назад в бутылку. Результат, доказанный в 1800е французским математиком Жозе Лиувиллем, можно использовать для установления того, что известно как реккурентная теорема Пуанкаре. Эта теорема показывает, что если вы достаточно долго ждете, система с конечной энергией и ограниченная конечным пространственным объемом (вроде молекул СО2 в закрытом помещении) будет возвращаться в состояние, произвольно близкое к

ее начальному состоянию
(в нашем случае все молекулы СО2 расположились в бутылке колы). Загвоздка в том, как долго вам придется ждать, чтобы это случилось. Для систем с любым, даже малым числом составляющих теорема показывает, что вы, как правило, будете ждать намного дольше возраста вселенной, пока составляющие по своему собственному согласию перегруппируются в их начальную конфигурацию. Тем не менее, с принципиальной точки зрения, соблазнительно отметить, что любая пространственно ограниченная физическая система при бесконечном терпении и долговечности будет возвращаться к своей начальной конфигурации.

Большое число страниц Войны и мира и большое число молекул газа в комнате является тем, что делает разницу энтропий между неупорядоченными и упорядоченными расположениями настолько огромной и что приводит к ужасно малой вероятности низкоэнтропийных исходов того или иного процесса. Если вы еще и еще раз подбрасываете в воздух только две двусторонние страницы, вы найдете, что они опустятся в правильном порядке примерно в 12,5 процентов случаев. С тремя страницами эта величина упадет примерно до 2 процентов, с четырьмя страницами примерно до 0,3 процента, с пятью страницами примерно до 0,03 процента, с шестью страницами примерно до 0,002 процента, с десятью страницами до 0,000000027 процента, а с 693 страницами процент подбрасываний, которые будут приводить к правильному порядку, настолько мал, – он содержит так много нулей после десятичной точки, – что я убедил издателя не использовать полстраницы, чтобы записать его явно. Аналогично, если вы выпустили только две молекулы газа бок о бок в пустую бутылку из-под колы, вы найдете, что при комнатной температуре их хаотическое движение будет приводить их обеих назад друг к другу (на расстояние миллиметра друг от друга), в среднем, грубо каждые несколько секунд. Для группы из трех молекул вы будете ждать день, для четырех молекул вы будете ждать год, а для исходного плотного пузыря из миллиона миллиардов миллиардов молекул потребуется время, намного превышающее текущий возраст вселенной, чтобы их хаотическое, рассеивающее движение привело их назад вместе в маленький упорядоченный сгусток. С большей уверенностью, чем в смерти и налогах, мы можем считать, что системы с большим числом составляющих эволюционируют к беспорядку.

Хотя это может и не быть очевидным немедленно, мы здесь подошли к интригующему моменту. Второй закон термодинамики, кажется, дал нам стрелу времени, одну из вещей, которые появляются, когда физические системы имеют большое число составляющих. Если вы посмотрите пленку о двух молекулах углекислого газа, которые разместились вместе в малом объеме (с подсветкой траекторий, показывающей движения каждой из них), вам будет тяжело сказать, прокручивалась ли пленка в прямом или в обратном направлении. Две молекулы будут летать тем и другим путем, временами собираясь вместе, временами удаляясь, но они не будут представлять макроскопическое, всеобъемлющее поведение, различающее одно направление во времени от обратного. Однако, если вы увидите пленку, на которой 1024 молекул углекислого газа собрались вместе в малом объеме (в виде, скажем, маленького плотного облака молекул), вы легко определите, показывалась ли пленка в прямом или обратном направлении: подавляюще более вероятным является, что прямое направление времени то, в котором молекулы газа становятся более и более однородно распределенными, достигая все большей и большей энтропии. Если вместо этого пленка показывает однородный рассеянный газ молекул, стягивающихся вместе в тесную группу, вы немедленно осознаете, что смотрите пленку в обратном направлении.

Те же рассуждения годятся, по-существу, для всех вещей, с которыми мы сталкиваемся в повседневной жизни – для вещей, которые имеют большое число составляющих: стрела прямой ориентации во времени указывает в направлении роста энтропии. Если вы смотрите пленку о стакане воды со льдом, поставленном на стойку, вы можете определить, какое направление является прямым во времени, отметив, что лед тает, – его молекулы Н2О распределяются по стакану, следовательно, достигая более высокой энтропии. Если вы смотрите пленку о разбивающемся яйце, вы можете определить, какое направление является прямым во времени, отметив, что составляющие яйца становятся все более и более разупорядоченными, – что яйцо разбивается скорее, чем собирается воедино, следовательно, также достигая более высокой энтропии.

Как вы можете видеть, концепция энтропии обеспечивает точную версию заключения "простота против сложности", которую мы нашли раньше. Для страниц Войны и мира легко выпасть из порядка, так как имеется так много неупорядоченных расположений. Для страниц тяжело попасть в совершенный порядок, поскольку сотни страниц должны будут двигаться точно правильным путем, чтобы упасть в уникальной последовательности, спланированной Толстым. Для яйца легко разбиться, так как имеется так много способов разбиться. Для яйца тяжело собраться воедино, поскольку огромное число разбрызгавшихся составляющих должно будет двигаться в совершенной координации, чтобы воспроизвести отдельный уникальный результат в виде неповрежденного яйца, покоящегося на столе. Для вещей с большим числом составляющих идти от низкой энтропии к высокой – от порядка к беспорядку – легко, так что это и происходит всегда. Двигаться от высокой энтропии к низкой – от беспорядка к порядку – тяжелее, так что это происходит, в лучшем случае, редко.

Отметим также, что эта энтропийная стрела не является полностью жесткой; здесь не заявляется, что это определение направления времени на 100 процентов "защищено от дурака". Напротив, подход достаточно гибкий, чтобы позволить тем или иным процессам случаться также и в обратном направлении. Поскольку второй закон провозглашает, что рост энтропии является только статистически вероятным, а не нерушимым фактом природы, он позволяет как редкую возможность, что страницы могут выпасть в совершенном числовом порядке, что молекулы газа могут собраться и влезть в бутылку, а яйца могут самовосстанавливаться. Используя математику энтропии, второй закон выражает в точности, как статистически невероятны такие события (вспомните гигантское число, втречавшееся шестью страницами раньше, – 101878 – показывающее, насколько более вероятно, что страницы Войны и мира лягут в беспорядке), но он подтверждает, что они могут происходить.

Это кажется похожим на убедительную историю. Статистические и вероятностные рассуждения дают нам второй закон термодинамики. В свою очередь, второй закон обеспечивает нас интуитивным различием между тем, что мы называем прошлым и тем, что мы называем будущим. Он дает нам практическое объяснение, почему вещи в повседневной жизни, вещи, которые обычно состоят из огромного числа составляющих, начинаются подобно этому, а заканчиваются подобно тому, в то время как мы никогда не видим их, начинающимися подобно тому, а заканчивающимися подобно этому. Но по прошествии многих лет – и благодаря важным вкладам физиков, подобных лорду Кельвину, Джозефу Лошмидту, Анри Пуанкаре, С.Х. Берберу, Эрнсту Цермело и Вильяму Гиббсу, – Людвиг Больцман пришел к пониманию, что полная история стрелы времени более удивительна. Больцман осознал, что хотя энтропия проясняет важные аспекты головоломки, она не отвечает на вопрос, почему прошлое и будущее кажутся такими различными. Вместо этого, энтропия переопределила вопрос важным образом, одним из тех, что приводят к неожиданным заключениям.

Поделиться:
Популярные книги

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Ворон. Осколки нас

Грин Эмилия
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ворон. Осколки нас

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Ведьма Вильхельма

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
8.67
рейтинг книги
Ведьма Вильхельма