Программа примера 11.32 выдает следующий результат.
(3, 4)
(6, 8)
Обсуждение
При умножении двух матриц число столбцов первой матрицы должно равняться числу строк второй матрицы. Число строк полученной матрицы равно числу строк первой матрицы, а число столбцов равно числу столбцов второй матрицы. Я обеспечиваю эти условия в отладочной версии с помощью макроса
assert
, определенного в заголовочном файле
<cassert>
.
Решающее
значение для эффективной реализации умножения имеет отсутствие избыточных операций по созданию и копированию временных объектов. Так, представленная в примере 11.32 функция умножения матриц передает результат по ссылке. Если бы алгоритм умножения я реализовал впрямую путем перегрузки оператора
operator*
, это привело бы к лишним операциям распределения, копирования и освобождения памяти, занимаемой временной матрицей. Потенциально такой подход может оказаться очень затратным при работе с большими матрицами.
В примере 11.32 реализуется равенство
A=A+B*C
, а не
A=B*C
, для того чтобы избежать лишней инициализации значений матрицы
A
.
Смотри также
Рецепт 11.17.
11.17. Вычисление быстрого преобразования Фурье
Проблема
Требуется выполнить эффективный расчет дискретного преобразования Фурье (ДПФ), используя алгоритм быстрого преобразования Фурье (БПФ).
Решение
Программный код примера 11.33 обеспечивает базовую реализацию БПФ.
Пример 11.33. Реализация БПФ
#include <iostream>
#include <complex>
#include <cmath>
#include <iterator>
using namespace std;
unsigned int bitReverse(unsigned int x, int log2n) {
Преобразование Фурье играет важную роль в спектральном анализе и часто используется в технических и научных приложениях. БПФ — это алгоритм вычисления ДПФ, который имеет сложность порядка N log2(N) в отличие от ожидаемой сложности N² для простой реализации ДПФ. Такое впечатляющее ускорение достигается в БПФ благодаря устранению избыточных вычислений.
Очень не просто найти хорошую реализацию БПФ, написанную на «правильном» C++ (т. е. когда программа на C++ не является механическим переложением алгоритмов, написанных на Фортране или С) и которая не была бы защищена сильно ограничивающей лицензией. Представленный в примере 11.33 программный код основан на открытом коде, который можно найти в сетевой конференции Usenet, посвященной цифровой обработке сигналов (comp.dsp). Большим преимуществом реализации БПФ на правильном C++ по сравнению с более распространенным решением в стиле С является то, что стандартная библиотека содержит шаблон
complex
, который позволяет существенно снизить объем необходимого программного кода. В представленной в примере 11.33 функции
fft
основное внимание уделялось простоте, а не эффективности.