Чтение онлайн

на главную - закладки

Жанры

Черные дыры и складки времени. Дерзкое наследие Эйнштейна

Торн Кип

Шрифт:

До публикации мы много думали о волнах, которые путешествуют во времени через червоточину; мы боялись возникновения неразрешимых парадоксов. Наконец (в частности, после существенной подсказки Джона Фридмана), мы убедили себя, что таких неразрешимых парадоксов не существует, и мы высказали эту гипотезу в нашей статье.12 Мы даже расширили гипотезу и предположили, что неразрешимые парадоксы никогда не возникнут, чем бы ни являлся неодушевленный предмет, проходящий через туннель. Именно это предположение вызвало наибольшие дискуссии.

Самое интересное письмо прислал нам Джо Полчински, профессор физики из Техасского университета в Остине. Он писал: «Дорогой Кип, если я правильно понял, вы предполагаете,

что в вашей [машине времени, основанной на червоточине, не будет неразрешимых парадоксов]. Мне кажется, что это не так». Затем он предложил элегантный и простой вариант парадокса матереубийцы — вариант, не связанный со свободной волей, и поэтому мы чувствовали, что обязаны его проанализировать.

Возьмем червоточину, которая была переделана в машину времени, и разместим два ее устья в межпланетном пространстве, причем оба они будут в покое и рядом друг с другом (рис. 14.9). Допустим, бильярдный шар запускается в правое отверстие с некоторой начальной скоростью из некоторой начальной точки. Шар войдет в правое устье, переместится назад во времени и вылетит из левого устья до того, как он вошел в правое (с точки зрения внешнего наблюдателя). Затем он ударит самого себя, только более «молодого», и таким образом воспрепятствует себе войти в правое отверстие и затем ударить себя.

Эта ситуация, подобно парадоксу матереубийцы, связана с перемещением назад во времени и изменением истории. В парадоксе матереубийцы я возвращаюсь назад во времени и, убив мою мать, не даю самому себе родиться. В парадоксе Полчински бильярдный шар возвращается назад во времени и, ударив самого себя, препятствует своему путешествию во времени.

Обе ситуации не имеют смысла. Законы физики должны логически соответствовать друг другу. Точно так же эволюция Вселенной, управляемая законами физики, должна полностью согласовываться сама с собой — по крайней мере, это будет так, пока Вселенная ведет себя классическим образом (не квантово-механическим); царство квантовой механики более призрачно. Мы с бильярдным шаром — в высшей степени классические объекты (т.е. мы проявляем квантово-механические свойства, только если на нас производить чрезвычайно точные измерения; см. главу 10). Поэтому для нас с бильярдным шаром не существует способа вернуться назад во времени и изменить наши собственные истории. 111

Так что же происходит с бильярдным шаром? Чтобы это понять, мы с Моррисом и Юртсевером углубились в изучение начальных условий шара, т.е. его начального местоположения и скорости. Мы спросили себя: «Для тех же самых начальных условий, которые привели к парадоксу Полчински, существует ли какая-либо другая траектория бильярдного шара, кроме изображенной на рис. 14.9, которая являлась бы логически самосогласованным решением и следствием физических законов, управляющих движением классических бильярдных шаров?» После многочисленных дискуссий мы пришли к выводу, что ответ, скорее всего, положительный, но мы не были абсолютно уверены в этом. И у нас уже не было времени это уточнять. Моррис и Юртсевер заканчивали писать свои диссертации и покидали Калифорнийский институт: им удалось получить работу в Милуоки и Триесте.

***

К счастью, в Калифорнийском институте не перевелись умные студенты. На подходе были еще двое: Фернандо Эчеверрия и Гуннар Клинкхаммер. Они и подхватили эстафету с парадоксом Полчински.

После нескольких месяцев сложных математических выкладок они доказали, что действительно существует полностью самосогласованная траектория бильярдного шара, в основе которой лежат начальные данные Полчински и которая удовлетворяет всем законам физики, управляющим движением классических бильярдных шаров. По сути дела, есть две

такие траектории. Они показаны на рис. 14.10. Я опишу каждую из этих траекторий по очереди, с точки зрения самого шара.

На схеме (а) (левая половина рис. 14.10) изображена траектория молодого, чистого изначального шара, который начинает свое движение в момент времени t = 3 часа дня и движется по тому же самому маршруту, как в парадоксе Полчински (рис. 14.9). Этот маршрут должен привести его к правому входу в червоточину. Через полчаса, в момент t = 3 часа 30 минут, сзади слева на него налетает более пожилой и потрепанный шар (который, для нас это ясно, он же, только постарше). Этот удар достаточно мягок и он только немного отклоняет молодой шар от его первоначального курса. Но этого удара вполне хватает, чтобы его помять. Молодой шар, уже помятый, продолжает двигаться по слегка измененной траектории и входит в отверстие червоточины в момент времени t = 3 часа 45 минут. Затем он путешествует назад во времени на 30 минут и выходит из другого отверстия в момент t = 3 часа 15 минут. По сравнению с траекторией в парадоксе Полчински (рис. 14.9), его теперешняя траектория немного изменена. Поэтому наш старый и помятый шар наносит своему более молодому «Я» мягкий скользящий удар в левый бок в момент времени t = 3 часа 30 минут. Такого сильного удара, как на рис. 14.9, не будет. Таким образом, последовательность действий шара вполне самосогласованна.

На схеме (б) (правая половина рис. 14.10) изображена та же траектория, что и на схеме (а), но здесь геометрия столкновения несколько отличается, соответственно, траектория между столкновениями является немного другой. В частности, старый помятый шар возникает из левого отверстия и направляется по другой траектории, чем на схеме

(а) . Эта траектория выводит его перед молодым изначальным шаром (а не позади него), и он ударяет юный шар по его переднему правому боку (а не по левому заднему).

Эчеверрия и Клинкхаммер показали, что обе траектории, (а) и

(б) , удовлетворяют всем физическим законам, которые управляют движением классических бильярдных шаров. Поэтому обе они могут возникнуть в реальной Вселенной (если реальная Вселенная может содержать машины времени, построенные на червоточинах).

Это и внушает наибольшее беспокойство. Такая ситуация никогда не может произойти во вселенной без машин времени. Если нет машин

времени, каждый набор начальных условий для бильярдного шара дает одну, и только одну траекторию, удовлетворяющую всем классическим законам физики. Есть только одно направление, по которому может двигаться наш шар. Машина времени разрушает такой порядок. Теперь есть два одинаково хороших возможных направления, по которым шар может двигаться.

На самом деле ситуация еще хуже, чем выглядит на первый взгляд: машина времени разрешает существование бесконечного числа одинаково хороших возможных направлений для движения шара. Во Врезке 14.2 описан простой пример.

Врезка 14.2

Кризис бильярдного шара: бесконечное множество траекторий

Однажды, сидя в аэропорту Сан-Франциско в ожидании самолета, я сообразил, что бильярдный шар, запущенный между двумя устьями червоточины, превращенной в машину времени, может двигаться по двум траекториям. По одной из них, (а), он пролетит между двумя устьями без приключений. По другой, (б), во время его прохода между двумя отверстиями в результате столкновения его отбрасывает направо.

Поделиться:
Популярные книги

Сандро из Чегема (Книга 1)

Искандер Фазиль Абдулович
Проза:
русская классическая проза
8.22
рейтинг книги
Сандро из Чегема (Книга 1)

На границе империй. Том 4

INDIGO
4. Фортуна дама переменчивая
Фантастика:
космическая фантастика
6.00
рейтинг книги
На границе империй. Том 4

Гридень 2. Поиск пути

Гуров Валерий Александрович
2. Гридень
Детективы:
исторические детективы
5.00
рейтинг книги
Гридень 2. Поиск пути

Глинглокский лев. (Трилогия)

Степной Аркадий
90. В одном томе
Фантастика:
фэнтези
9.18
рейтинг книги
Глинглокский лев. (Трилогия)

Неудержимый. Книга IV

Боярский Андрей
4. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IV

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Товарищ "Чума" 5

lanpirot
5. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 5

По воле короля

Леви Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
По воле короля

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

Полковник Гуров. Компиляция (сборник)

Макеев Алексей Викторович
Полковник Гуров
Детективы:
криминальные детективы
шпионские детективы
полицейские детективы
боевики
крутой детектив
5.00
рейтинг книги
Полковник Гуров. Компиляция (сборник)

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Фронтовик

Поселягин Владимир Геннадьевич
3. Красноармеец
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Фронтовик