Дядюшка Петрос и проблема Гольдбаха
Шрифт:
На последних его словах я уже громко смеялся.
– Что я такого веселого сказал? – спросил Сэмми.
– После всех этих лет, когда я пытался понять загадку Петроса, – сказал я, – я возвращаюсь к началу. Ты всего лишь повторил слова моего отца, которые я в юности отверг как филистерские и вульгарные: «Тайна Жизни, мой сын, в том, что надо всегда ставить себе достижимые цели». Именно это ты сейчас и сказал. И в том, что он этого не сделал, – суть трагедии Петроса Папахристоса!
Сэмми кивнул.
– Внешние признаки всегда обманчивы, – сказал он с деланной торжественностью. – Оказывается, мудрый старейшина семейства Папахристос – совсем
В эту ночь я спал на полу в комнате Сэмми под привычный скрип его пера, прерываемый иногда вздохами или стонами, когда Сэмми увязал в сетях трудной топологической задачи. Рано утром он ушел на семинар, а после обеда мы встретились в Математической библиотеке в Файн-холле, как договаривались.
– Пойдем кое-что посмотрим, – сказал Сэмми. – У меня для тебя сюрприз.
Идти пришлось довольно далеко среди деревьев по пригородному шоссе, устланному желтыми листьями.
– Какие курсы ты в этом году слушаешь? – спросил Сэмми, пока мы шли к своей таинственной цели.
Я начал перечислять: введение в алгебраическую геометрию, дополнительные главы комплексного анализа, теория представлений групп…
– А теория чисел? – перебил Сэмми.
– Нет. А что?
– Да я все думаю о твоем дяде. Не хотелось бы мне, чтобы у тебя возникли безумные идеи насчет следования семейной традиции, и ты связался бы…
– С проблемой Гольдбаха? – расхохотался я. – Никогда в жизни!
Сэмми кивнул.
– Это и хорошо. А то я начал подозревать, что вас, греков, тянет на неразрешимые проблемы.
– То есть? Ты еще кого-нибудь знаешь?
– Здесь есть знаменитый тополог, профессор Папакириакопулос. Уже годы он бьется, пытаясь доказать гипотезу Пуанкаре – это самая знаменитая проблема в топологии низших размерностей, уже шестьдесят лет никто не может ее решить. Ультрасупертрудная.
Я замотал головой:
– До какой бы то ни было знаменитой нерешенной ультрасупертрудной проблемы я и кочергой не дотронусь.
– Рад это слышать, – ответил Сэмми.
Мы дошли до большого, ничем не примечательного здания, окруженного обширной территорией. Когда мы вошли, Сэмми понизил голос.
– Я ради тебя получил специальное разрешение, чтобы сюда прийти, – сказал он.
– А где мы?
– Сам увидишь.
Мы прошли по коридору и вошли в широкий полутемный зал с обстановкой несколько обветшалого, но аристократического клуба английских джентльменов. Там было человек пятнадцать, от слегка пожилых до очень старых. Они сидели в кожаных креслах и на диванах, некоторые у окна читали газеты, другие разговаривали, собравшись небольшими группами.
Мы сели у столика в углу.
– Видишь вот этого? – спросил Сэмми, понизив голос и показывая на старого джентльмена восточной наружности, который безмятежно размешивал кофе в чашечке.
– Да?
– Нобелевский лауреат по физике. А вон тот, в конце зала, – Сэмми указал на рыжеволосого толстяка, который горячо жестикулировал, с сильным акцентом что-то рассказывая своему соседу, – по химии.
Потом он обратил мое внимание на двух джентльменов средних лет, сидящих за соседним столом.
– Тот, что слева – Андре Вейль…
– Тот самый Андре Вейль?
– Да, один из величайших живущих математиков. А второй, с трубкой, это Роберт Оппенгеймер – тот самый Роберт Оппенгеймер, отец атомной бомбы. Он директор.
– Директор чего?
– Всего вот этого. Ты находишься в Институте перспективных исследований, мыслительном
Я попытался что-то спросить, но Сэмми оборвал меня:
– Тсс! Смотри! Вон там!
В дверях появился человек, который был старше всех присутствующих, – лет шестидесяти, среднего роста, исхудавший до последней степени. Он был одет в толстое пальто и надвинутую на уши вязаную шапку. На секунду он остановился, озирая зал рассеянным взглядом из-за толстых очков. Никто не обратил на него внимания: очевидно, он бывал здесь постоянно. Человек медленно прошел к чайному столу, ни с кем не поздоровавшись, налил себе чашку чистого кипятка из чайника и сел возле окна. Потом он медленно снял пальто. Под ним оказался теплый пиджак и еще четыре-пять свитеров, от которых видны были воротники.
– Кто это? – спросил я шепотом.
– Угадай!
– Понятия не имею – он похож на бродягу. Он что, сумасшедший?
Сэмми захихикал.
– Друг мой, это Рок твоего дяди, тот, кто дал ему предлог, чтобы бросить математику. Это не кто иной, как отец теоремы о неполноте, великий Курт Гёдель!
Я просто ахнул:
– Боже мой! Вот это – Курт Гёдель? Но почему он так одет?
– Очевидно, он убежден – вопреки общему несогласию его врачей, – что у него очень больное сердце, и что если он не изолирует себя от холода всей этой теплой одеждой, оно остановится.
– Но здесь же тепло!
– Первосвященник Высшей Логики, современный Аристотель, с твоим заключением не согласен. Кому же из вас я должен верить, тебе или ему?
На обратном пути Сэмми развернул целую теорию.
– Я думаю, что сумасшествие Гёделя – а он, несомненно, в некотором смысле полностью сумасшедший – это цена, которую он заплатил за то, что слишком приблизился к Истине в ее абсолютной форме. Какой-то поэт сказал, что «человек не может вынести слишком много реальности», или что-то вроде этого. Вспомни библейское Древо Познания или Прометея из вашей мифологии. Такие люди переходят положенный предел; они узнают больше, чем должно знать человеку, и за этот грех гордыни им приходится расплачиваться.
Дул ветер, кружа вокруг нас мертвые листья.
Сокращаю рассказ до минимума (я имею в виду рассказ о моей жизни).
Я так и не стал математиком, и уже не в результате интриг дяди Петроса. Хотя его «интуитивная» низкая оценка моих способностей определенно сыграла роль в моем решении, создавая постоянное, подталкивающее чувство сомнения в себе, настоящей причиной был страх.
Примеры математических enfants terribles [29], упомянутых в рассказе дяди: Сринивасы Рамануджана, Алана Тьюринга, Курта Гёделя и – не в последнюю очередь – его самого, заставили меня крепко задуматься, а действительно ли я готов быть великим математиком. Это были люди двадцати пяти лет от роду, которые брались за проблемы невероятной трудности и исторической важности – и решали их. В чем я был согласен с дядей, так это в том, что не хотел становиться посредственностью и «ходячей трагедией», как он это назвал. Математика, как учил меня Петрос, признает только величайших, и этот вид естественного отбора единственной альтернативой славе предлагает полный провал. Да, но я тогда был исполнен надежд и иллюзий относительно своих способностей, и не профессиональной неудачи я тогда испугался.