Чтение онлайн

на главную - закладки

Жанры

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Шрифт:

Значительное различие в сложности реализации двух подходов обусловлено значительным различием масс используемых зондов, т. е. различием между высокоэнергетической топологической и низкоэнергетической колебательной модой (и наоборот), если радиус R(и 1/ R) сильно отличается от планковской длины (когда R= 1). При таких радиусах «высоким» энергиям соответствуют чрезвычайно большие массы зондов (в миллиарды миллиардов раз больше массы протона), а «низким» энергиям соответствуют исчезающе малые массы. Различие двух подходов при этом непреодолимо велико, так как даже создать столь тяжёлые струнные конфигурации в настоящее время технически невозможно. На практике можно реализовать лишь один из двух подходов, а именно тот, в котором используется более лёгкая струнная конфигурация. До сего момента именно на него неявно опирались все предыдущие рассуждения, связанные

с понятием расстояния; именно он питает нашу интуицию, и, следовательно, хорошо с ней согласуется.

Игнорируя практическую сторону вопроса, можно сказать, что в описываемой теорией струн Вселенной каждый вправе выбирать любой из двух подходов. Когда астрономы измеряют «размер Вселенной», они регистрируют фотоны, которые, путешествуя по Вселенной, волей случая попадают в их телескопы. Эти фотоны являются лёгкимиструнными модами, и результат равен 10 61планковских длин. Если три известные нам пространственные измерения действительно циклические, а теория струн верна, то астрономы, использующие совершенно другое (в данный момент не существующее) оборудование, в принципе могли бы обмерять небеса тяжёлыми модами намотанных струн. Они получили бы ответ, обратный этому огромному расстоянию. Именно в таком смысле можно считать, что Вселенная либо громадна (как мы обычно и считаем), либо крайне мала. Согласно информации, которую дают лёгкие моды струны, Вселенная громадна и расширяется, а согласно информации тяжёлых мод — крайне мала и сжимается. В этом нет противоречия: просто используются два различных, но одинаково осмысленных определения расстояния. Из-за технических ограничений для нас гораздо привычнее первое определение, но и второе определение столь же законно.

Сейчас можно ответить на вопрос о двухметровых людях в крошечной вселенной. Когда мы измеряем человеческий рост, мы пользуемся лёгкими модами струны. Чтобы сравнить этот рост с размером Вселенной, для измерения размера Вселенной нужно использовать ту же процедуру, что даст 15 миллиардов световых лет — значительно больше, чем два метра. Спрашивать же, как двухметровый человек поместится в «крошечную» вселенную, так же бессмысленно, как сравнивать божий дар с яичницей. Если есть два понятия расстояния — на основе лёгких и на основе тяжёлых мод, — то нужно сравнивать результаты измерений, сделанных одним и тем же способом.

Минимальный размер

Предыдущее обсуждение было лишь разминкой; теперь мы перейдём к главному. Если всё время измерять расстояния «простым способом», т. е. использовать самые лёгкие моды струны вместо самых тяжёлых, полученные результаты всегдабудут больше планковской длины. Чтобы это понять, посмотрим, что будет происходить при гипотетическом Большом сжатии всех трёх пространственных измерений в предположении, что они являются циклическими. Для определённости примем, что в начале мысленного эксперимента лёгкими являются моды ненамотанных струн и измерения с их помощью показывают, что радиус Вселенной огромен, а Вселенная сжимается. По мере сжатия эти моды будут становиться тяжелее, а топологические моды легче. Когда радиус уменьшится до планковской длины, т. е. Rстанет равным 1, массы топологических и колебательных мод станут сравнимы. Два подхода к измерению расстояния окажутся одинаково сложными для осуществления, и, кроме того, оба они приведут к одинаковому результату, так как единица обратна самой себе.

По мере того как радиус будет продолжать уменьшаться, топологические моды станут легче, и, поскольку мы всегда выбираем «простой способ», именно они будут теперь использоваться для измерения расстояний. Так как этот метод измерения даёт значения, обратныезначениям в случае колебательных мод, радиус будет больше планковской длины, и этот радиус будет возрастать. Это простое следствие того, что при стягивании R(измеряемого с помощью ненамотанных струн) до 1 и дальнейшем сжатии, величина 1/ R(измеряемая с помощью намотанных струн) будет увеличиваться до 1 и продолжать расти. Следовательно, если всегда следить за тем, чтобы для измерений использовались лёгкие моды струны, т. е. чтобы всегда использовался «простой способ» измерения расстояний, то минимальным зарегистрированным значением будет планковская длина.

В частности, здесь удаётся избежать Большого сжатия до нулевого размера: радиус Вселенной, измеряемый с помощью лёгких мод струн-зондов, всегда больше планковской длины. Вместо того чтобы переходить через значение планковской длины в сторону меньших размеров, радиус, измеряемый с помощью самых лёгких мод, уменьшается до планковской длины и тут же начинает расти. Сжатие заменяется расширением.

Использование лёгких мод струны согласуется с традиционным понятием длины, которое существовало задолго до открытия

теории струн. Именно этопонятие расстояния ответственно, как обсуждалось в главе 5, за возникновение неразрешимых проблем с бурными квантовыми флуктуациями в случае, если масштабы, меньшие планковских, считаются физически значимыми. Здесь ещё с одной точки зрения видно, что с помощью теории струн можно избежать ультрамикроскопических расстояний. В физической формулировке общей теории относительности и в соответствующей математической формулировке римановой геометрии есть только одно понятие расстояния, и оно может быть сколь угодно малым. В физической формулировке теории струн и в разрабатываемой для неё области математики — квантовой геометрии — есть два понятия расстояния. Их осмысленное использование даёт понятие расстояния, которое согласуется как с нашей интуицией, так и с общей теорией относительности, если масштабы достаточно велики, но радикально отличается от последних, если эти масштабы становятся малыми. Одно из отличий состоит в том, что расстояния, меньшие планковской длины, недосягаемы.

Приведённые утверждения достаточно сложны, поэтому ещё раз подчеркнём один из главных моментов. Если мы принципиально будем игнорировать различие между «простым» и «трудным» подходами к измерению длины и будем, например, продолжать использовать моды ненамотанной струны при стягивании Rза планковскую длину, то, казалось бы, мы действительно сможем измерить расстояния, меньшие планковской длины. Однако, как говорилось выше, слово «расстояния» в предыдущем предложении должно быть аккуратно определено, так как у этого слова два различных значения, и только одно из них соответствует нашему традиционному пониманию. А в данном случае, когда Rстановится меньше планковской длины, но мы продолжаем использовать ненамотанные струны (несмотря на то, что они теперь тяжелее намотанных), мы используем «трудный» подход к измерению расстояний, и смысл понятия «расстояние» несоответствует общеупотребительному значению этого слова. Эти рассуждения, однако, далеко выходят за рамки семантики или даже за рамки обсуждения удобства или практичности измерения. Даже если мы выберем нестандартное понятие расстояния, считая радиус меньшим, чем планковская длина, законы физики, как обсуждалось в предыдущих пунктах, будут идентичны законам физики во Вселенной, где этот радиус (в обычном понимании расстояния) будет больше планковской длины (об этом, например, свидетельствует точное соответствие табл. 10.1 и 10.2). А для нас важна именно физика, а не терминология.

На основе этих идей Бранденбергер, Вафа и другие физики предложили переписать законы космологии таким образом, чтобы в моделях Большого взрыва или возможного Большого сжатия фигурировала не Вселенная нулевого размера, а Вселенная, все размеры которой равны планковской длине. Безусловно, это весьма интересное предложение для устранения математических, физических и логических нестыковок в описании Вселенной, рождающейся из точки с бесконечной плотностью и схлопывающейся в эту точку. Конечно, сложно вообразить себе Вселенную, сжатую до крошечной песчинки планковского размера, но вообразить себе Вселенную, сжатую до нулевого размера — вот это уж действительно слишком. Весьма вероятно, что более удобоваримую альтернативу стандартной модели Большого взрыва даст находящаяся сейчас в зачаточном состоянии струнная космология, которую мы обсудим в главе 14.

Насколько общий этот вывод?

Что произойдёт, если пространственные измерения не являются циклическими? Будут ли и в этом случае справедливы замечательные утверждения теории струн о минимальных пространственных размерах? Никто не знает точного ответа. Важнейшее свойство циклических измерений состоит в том, что на них можно наматывать струны. Коль скоро на пространственные измерения можно наматывать струны, большинство выводов будут оставаться справедливыми вне зависимости от точного вида этих измерений. Но что будет, если, скажем, два измерения имеют вид сферы? Тогда нельзя заставить струны сохранять намотанную конфигурацию: они всегда могут «соскользнуть» подобно тому, как резинка может соскользнуть с мяча, на который она натянута. Накладывает ли теория струн ограничение на минимальный размер и в этом случае?

Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли всё пространственное измерение (как в примерах этой главы), или (с чем мы столкнёмся в главах 11 и 13) коллапсирует отдельный «кусок» пространства. Как считает большинство теоретиков, независимо от вида пространства существуетминимальный предел сжатия всего пространственного измерения, и механизм возникновения этого предела во многом схож с механизмом в случае циклических измерений. Обоснование существования предела является важной задачей дальнейших исследований ввиду её непосредственного влияния на многие аспекты теории струн, включая следствия для космологии.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Начальник милиции. Книга 5

Дамиров Рафаэль
5. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 5

Адвокат Империи 2

Карелин Сергей Витальевич
2. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 2

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Жена фаворита королевы. Посмешище двора

Семина Дия
Фантастика:
фэнтези
5.00
рейтинг книги
Жена фаворита королевы. Посмешище двора

Мама из другого мира...

Рыжая Ехидна
1. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
7.54
рейтинг книги
Мама из другого мира...

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Наследница долины Рейн

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наследница долины Рейн

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI