Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 6. Электродинамика
Шрифт:

Предположим, мы выбрали петлю Г1 в виде окружности с радиусом r (фиг. 18.2, а). Контурный интеграл от магнитного поля будет равен току I, деленному на e0с2. Мы имеем

(18.8)

Все это мы получили бы для постоянного тока, но резуль­тат не изменится, если учесть добавку Максвелла, потому что для плоской поверхности S внутри окружности электрического поля нет (считая, что провод очень хороший проводник). Поверхностный интеграл от dE/dt равен нулю.

Предположим, однако, что теперь мы медленно продвигаем кривую Г1 вниз. Мы будем получать

всегда тот же самый резуль­тат до тех пор, пока не нарисуем кривую вровень с пластинами конденсатора

Фиг. 18.2. Магнитное поле вблизи заряжаемого конденсатора.

Тогда ток I будет стремиться к нулю. Исчезнет ли при этом магнитное поле? Это было бы очень странно. Давайте поглядим, что говорит уравнение Максвелла для кривой Г, которая представляет собой окружность радиуса r, плоскость которой проходит между пластинами конденсатора (фиг. 18.2, б). Контурный интеграл от В вокруг Г есть 2prB. Он должен быть равен производной по времени потока Е, проходящего сквозь плоскую поверхность круга S2. Этот поток Е, как мы знаем из закона Гаусса, должен быть равен

произведению 1/e0 на заряд Q на одной из пластин конденсатора. Мы имеем

(18.9)

Это очень хорошо. Результат тот же, что мы нашли в (18.8). Интегрирование по меняющемуся электрическому полю 'дает то же магнитное поле, что и интегрирование по току в проводе. Конечно, как раз об этом и говорит уравнение Максвелла. Легко видеть, что так должно быть всегда, если применить наши рас­суждения к двум поверхностям 81и S'1, ограниченным одной и той же окружностью Г1 на фиг. 18.2, б. Сквозь S1проходит ток /, но нет электрического потока. Сквозь S1нет тока, но есть электрический поток, меняющийся со скоростью I/e0. То же поле В получится, если мы применим уравнение IV (табл. 18.1) к каждой поверхности.

Из нашего обсуждения добавки, введенной Максвеллом, у вас могло сложиться впечатление, что она добавляет немного — просто подправляет уравнения в согласии с тем, что мы уже ожидали. Это верно, пока мы рассматриваем уравнение IV само по себе, ничего особенно нового не появляется. Слова само по себе, однако, весьма важны. Небольшое изменение, введенное Максвеллом в уравнение IV в сочетании с другими уравнениями, на самом деле дает много нового и важного. Но прежде чем заняться этим вопросом, поговорим подробнее в табл. 18.1.

§ 3. Все о классической физике

В табл. 18.1 сведено все, что знала фундаментальная клас­сическая, физика, т. е. та физика, которая была известна до 1905 г. В одной этой таблице есть все. С помощью этих уравне­ний можно понять все достижения классической физики.

Прежде всего, мы имеем уравнения Максвелла, записанные как в расширенном виде, так и в короткой математической фор­ме. Затем есть сохранение заряда, которое даже записано в скобках, потому что сохранение заряда можно вывести из имеющихся полных уравнений Максвелла. Так что в таблице имеются даже небольшие излишки. Дальше мы записали закон для силы, поскольку все имеющиеся электрические и магнитные поля ничего не говорят нам до тех пор, пока мы не знаем, как они действуют на заряды. Однако, зная Е и В, мы можем найти силу, действующую на объект с зарядом q, который дви­жется со скоростью v. Наконец, имеющаяся сила ничего не говорит нам, пока мы не знаем, что происходит, когда сила ускоряет

что-то; нам необходимо знать закон движения, кото­рый говорит, что сила равна скорости изменения импульса. {Помните? Об этом говорилось в начале курса.) Мы даже вклю­чили эффекты теории относительности, записав импульс в виде р=m0vЦ(1-v2/c2).

Но если мы действительно хотим законченности, нам сле­дует добавить еще один закон — закон тяготения Ньютона? и мы поставили его в конце.

Итак, в одной небольшой таблице мы собрали все фундамен­тальные законы классической физики, даже хватило места выписать их словами и еще с некоторым излишком. Это вели­кий момент. Мы покорили большую высоту. Мы на вершине К-2, мы почти подготовлены покорить теперь Эверест, т. е. квантовую механику.

В основном мы пытались научиться понимать эти уравнения. А теперь, когда мы собрали их воедино, мы собираемся разо­браться, что означают эти уравнения, что нового скажут они о том, чего мы еще не поняли. Мы много потрудились, чтобы вскарабкаться к этой точке. Это потребовало больших усилий, а теперь мы собираемся начать приятное путешествие — спуск с горы в долину, там мы увидим все, чего мы достигли.

§ 4. Передвигающееся поле

А теперь о новых следствиях. Они возникают из сопоставле­ния всех уравнений Максвелла. Сначала давайте посмотрим, что произошло бы в особенно простом случае. Предположим, что изменяется только одна координата у всех величин, т. е. рассмотрим задачу одного измерения.

Случай этот показан на фиг. 18.3. Перед нами заряженный лист, помещенный на плоскости yz. Сначала он неподвижен, а затем мгновенно приобретает скорость и в направлении у и движется с этой постоянной скоростью. Вас может беспокоить присутствие такого «бесконечного» ускорения, но фактически это не имеет значения; просто представьте себе, что скорость достигает значения и очень быстро. Итак, мы внезапно полу­чаем поверхностный ток J (J — ток на единицу ширины в z-направлении). Чтобы упростить проблему, предположим, что имеется еще неподвижный лист, заряженный противоположно и наложенный на плоскость yz, так что электростатические эф­фекты отсутствуют.

Фиг. 18.3. Бесконечная заряженная плоскость неожи­данно приводится в поступательное движение.

Возникают магнитное и электрическое поля, распространяю­щиеся от плоскости с постоянной скоростью.

Представим себе также (хотя на фигуре мы показали лишь то, что происходит в конечной области), что лист простирается до бесконечности в направлениях ±у и ±z. Другими словами, здесь мы имеем случай, когда тока нет, а затем внезапно появляется однородный лист с током. Что же произойдет?

Мы знаем, что, когда имеется лист с током в положительном y-направлении, возникнет магнитное поле, направленное в отрицательном z-направлении при х>0 и в положительном z-направлении при х<0. Мы могли бы найти величину В, используя тот факт, что контурный интеграл от магнитного поля будет равен току на e0с2. Мы получили бы, что В– J/2e0с2 (поскольку ток I в полосе шириной w равен Jw, а контурный интеграл от В есть 2Вw).

Так мы определяем поле вблизи листа для малых значений х, но, поскольку мы считаем лист бесконечным, хотелось бы получить с помощью тех же рассуждений магнитное поле подальше (для больших значений х). Однако это означало бы, что в момент, когда мы включаем ток, магнитное поле внезапно изменяется повсюду от нуля до конечной величины. Но погодите! При внезапном изменении магнитного поля возникают огром­ные электрические эффекты. (Как бы оно ни менялось, электри­ческие эффекты возникнут.) Так что в результате движения за­ряженного листа создается меняющееся магнитное поле и, следовательно, должны возникнуть электрические эффекты.

Поделиться:
Популярные книги

Граф

Ланцов Михаил Алексеевич
6. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Граф

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Начальник милиции. Книга 3

Дамиров Рафаэль
3. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 3

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Адаптация

Уленгов Юрий
2. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Адаптация

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Купец V ранга

Вяч Павел
5. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец V ранга

Неудержимый. Книга XX

Боярский Андрей
20. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XX

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2