Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

Вот один из примеров того, что мы имеем в виду. Составляю­щая по оси у электрического поля Е должна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:

СXE=дB/дt, (33.19)

в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).

Фиг. 33.4. Граничное условие E y 2 =E y 1 ,

полученное из равенства

Согласно уравнению (33.19), криволинейный интеграл от Е по петле Г равен скорости изменения потока В через эту петлю:

Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Е должен быть нулем. Если y-компоненты поля на двух сторонах границы равны Еy1и Еy2, а длина прямоугольника равна l, то мы получаем

E y 1 l-E y 2 l=0

или

Еу1у2, (33.20)

как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.

Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрении маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватываю­щих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.

Как, например, в задаче о тепловом потоке через поверх­ность определить температуру на обеих прилежащих к ней сторонах? Конечно, вы вправе утверждать, что тепло, прите­кающее к границе с одной стороны, должно быть равно теплу, утекающему от нее с другой. Обычно это возможно и, вообще говоря, очень полезно находить граничные условия из такого рода физических рассуждений. Однако могут встретиться случаи, когда при работе над какой-то проблемой вам известны лишь уравнения и вы не можете непосредственно увидеть, какие же физические аргументы можно использовать. Так что, хотя в данный момент мы заинтересованы только в электромаг­нитных явлениях, где можно привести физические аргументы, я хочу научить вас методу, который можно применить в любой задаче: общему методу нахождения непосредственно из диффе­ренциальных уравнений того, что происходит на границе.

Начнем с выписывания всех уравнений Максвелла для ди­электрика, но на этот раз скрупулезно выписывая все компо­ненты:

Эти

уравнения должны быть справедливы как в области 1 (слева от границы), так и в области 2 (справа от нее). Мы уже выписывали решения в областях 1 и 2. Они должны удовлет­воряться и на самой границе, которую мы можем назвать об­ластью 3. Хотя обычно мы считаем границу чем-то абсолютно резким, на самом деле таких границ не бывает. Физические свойства, правда, изменяются очень быстро, но все же не беско­нечно быстро. Во всяком случае, мы можем считать, что между областями 1 и 2 изменение показателя преломления хотя и очень быстрое, но непрерывное. Это небольшое расстояние, на котором оно происходит, мы можем назвать областью 3. Подобный же переход в области 3 будут претерпевать и другие характери­стики поля, такие, как Рхили Еyи т. п. Однако дифферен­циальные уравнения должны удовлетворяться; именно следуя за дифференциальными уравнениями в этой области, мы придем к необходимым «граничным условиям».

Предположим, например, что у нас есть граница между вакуумом (область 1) и стеклом (область 2). В вакууме нечему поляризоваться, так что P1=0. А поляризация в стекле пусть равна Р2. Между вакуумом и стеклом существует гладкий, но быстрый переход. Если мы проследим за какой-то компонентой Р, скажем Рх, то она может изменяться так, как это показано на фиг. 33.5, а.

Фиг. 33.5. Поля в переходной об­ласти 3 между двумя различными материалами в областях 1 и 2.

Предположим теперь, что мы взяли первое из наших уравнений — уравнение (33.21). В него входит производ­ная от компонент Р по переменным х, у и z. Производные по у и r не очень интересны — в этих направлениях не происходит ничего замечательного. Но производная от Рхпо х в области 3 из-за быстрого изменения Рхбудет громадна. Производная дРх/дх, как показано на фиг. 33.5,б, имеет на границе очень резкий пик. Если вы представите, что граница сжимается до еще более тонкой области, пик вырастет еще больше. Если для интересующих нас волн граница действительно резкая, то ве­личина дP/дx в области 3 будет больше, много больше любого вклада, который может получиться из-за изменения Рв сто­роне от границы, так что мы пренебрегаем любыми другими изменениями, за исключением происходящих на границе.

Но как теперь можно удов­летворить уравнению (33.21), если с правой стороны у нас возвышается огромный пик? Только если существует рав­ный ему громадный пик с другой стороны. Что-то и с левой стороны должно быть большим. Единственная воз­можность — это дЕх/дх, пос­кольку изменения в направ­лениях у и z в тех волнах, о которых мы только что упо­мянули, дают лишь малый эффект. Таким образом, -e0(дЕх/дх) должно быть, как это показано на фиг. 33.5,в, точной копией дP/дx. Получается

Поделиться:
Популярные книги

Вкус ледяного поцелуя

Полякова Татьяна Викторовна
2. Ольга Рязанцева
Детективы:
криминальные детективы
9.08
рейтинг книги
Вкус ледяного поцелуя

Проблема майора Багирова

Майер Кристина
1. Спецназ
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Проблема майора Багирова

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

Лейтенант космического флота

Борчанинов Геннадий
1. Звезды на погонах
Фантастика:
боевая фантастика
космическая фантастика
космоопера
рпг
фэнтези
фантастика: прочее
5.00
рейтинг книги
Лейтенант космического флота

Гарем на шагоходе. Том 5

Гремлинов Гриша
5. Волк и его волчицы
Фантастика:
боевая фантастика
фэнтези
5.00
рейтинг книги
Гарем на шагоходе. Том 5

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III