Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
причем величина jпол представляла токи от движения связанных зарядов в диэлектриках, a jдp — все другие токи. Пойдем дальше. Я хочу из jр выделить часть jмar, которая описывает усредненные токи внутри намагниченных материалов, и дополнительный член, который мы будем называть jnpов и который будет описывать все остальное. Он, вообще говоря, относится к токам в проводниках, но может описывать и
j =jпол+jмaг+jnpoв. (36.5)
Разумеется, именно этот ток входит в уравнение Максвелла с ротором В;
Теперь мы должны связать ток jмaг с величиной вектора намагниченности М. Чтобы вы представляли, к чему мы стремимся, скажу, что должен получиться такой результат:
jмaг=СXM. (36.7)
Если в магнитном материале нам всюду задан вектор намагниченности М, то плотность циркуляционного тока определяется ротором М. Посмотрим, можно ли понять, почему так происходит.
Сначала возьмем цилиндрический стержень, равномерно намагниченный параллельно его оси. Мы знаем, что физически такая равномерная намагниченность означает на самом деле однородную повсюду внутри материала плотность атомных циркулирующих токов. Попытаемся представить себе, как выглядят эти реальные токи в поперечном сечении стержня. Мы ожидаем увидеть токи, напоминающие изображенные на фиг.36.2.
Фиг.36.2. Схематическая диаграмма циркулирующих атомных токов в поперечном сечении железного стержня, намагниченного в направлении оси z.
Каждый атомный ток течет по кругу, образуя крохотную цепь, причем все циркулирующие токи текут в одном и том же направлении. Каким же тогда будет эффективный ток? В большей части стержня он, конечно, не дает вообще никакого эффекта, ибо рядом с каждым током есть другой ток, текущий в противоположном направлении. Если представить себе небольшую поверхность, показанную на фиг. 36.2 линией АВ, которая, однако, чуть-чуть толще отдельного атома, то полный ток через такую поверхность должен быть равен нулю. Внутри материала никакого тока нет. Однако обратите внимание, что на поверхности материала атомные токи не компенсируются соседними токами, текущими в другом направлении. Поэтому по поверхности все время в одном направлении вокруг стержня течет ток. Теперь вам понятно, почему я утверждал, что равномерно намагниченный стержень эквивалентен соленоиду с текущим по нему электрическим током.
Как же эта точка зрения согласуется с выражением (36.7)? Прежде всего намагниченность М внутри материала постоянна, так что все ее производные равны нулю. Это согласуется с нашей геометрической картиной. Однако М на поверхности на самом деле не постоянна, она постоянна вплоть до поверхности, а затем неожиданно падает до нуля. Таким образом, непосредственно на поверхности возникает громадный градиент, который в соответствии с выражением (36.7) даст огромную плотность тока. Предположим, что мы наблюдаем
Хотя производная dMz/dy в точке С равна нулю, производная dMz/dx будет большой и положительной. Выражение (36.7) говорит, что в отрицательном направлении оси у течет ток огромной плотности. Это согласуется с нашим представлением о поверхностном токе, текущем вокруг цилиндра.
Теперь мы можем найти плотность тока в более сложном случае, когда намагниченность в материале меняется от точки к точке. Качественно нетрудно понять, что если в двух соседних областях намагниченность различная, то полной компенсации циркулирующих токов не происходит, поэтому полный ток внутри материала не равен нулю. Именно этот эффект мы и хотим получить количественно.
Прежде всего вспомните, что в гл. 14, § 5 (вып. 5), мы выяснили, что циркулирующий ток I создает магнитный момент
m=IА, (36.9)
где А— площадь, ограниченная контуром тока (фиг. 36.3).
Фиг. 36.3. Дипольный момент m кон тура тока равен IA.
Рассмотрим маленький прямоугольный кубик внутри намагниченного материала (фиг. 36.4).
Фиг. 36.4. Небольшой намагниченный кубик эквивалентен циркулирующему поверхностному току.
Пусть кубик будет так мал, что намагниченность внутри него можно считать однородной. Если компонента намагниченности этого кубика в направлении оси z равна Мz, то полный эффект будет таким, как будто по вертикальным граням течет поверхностный ток. Величину этого тока мы можем найти из равенства (36.9). Полный магнитный момент кубика равен произведению намагниченности на объем:
m=M z (abc),
откуда, вспоминая, что площадь равна ас, получаем
I=М z b.
Другими словами, на каждой из вертикальных поверхностей величина тока на единицу длины по вертикали равна Мz.
Представьте теперь два таких маленьких кубика, расположенных рядом друг с другом (фиг. 36.5).