Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
Рассмотрим специальный случай кубического кристалла. Плотность энергии w для него получается такой:
т. е. всего 81 слагаемое! Но кубический кристалл обладает определенными симметриями. В частности, если кристалл повернуть на 90°, то все его физические свойства останутся теми же. Например, у него должна быть одна и та же жесткость относительно растяжения как в направлении оси у, так и в направлении оси х. Следовательно, если мы переменим наши определения осей координат х и у в уравнении (39.15), то энергия не должна измениться. Поэтому для кубического кристалла
Cхххх=Суууу=Czzzz. (39.16)
Мы
Но вы можете сказать: «Рассуждая таким же образом, можно сделать и Cyyyy=0!» Это неверно. Ведь здесь у нас четыре игрека. Каждый у изменяет знак, а четыре минуса дают плюс. Если у встречается два или четыре раза, то такие компоненты не должны быть равны нулю. Нулю равны только те компоненты, у которых у встречается либо один, либо три раза. Таким образом, для кубического кристалла не равны нулю только те С, у которых один и тот же значок встречается четное число раз. (Рассуждения, которые мы провели для у, имеют силу и для х и для z.) Таким образом, выживают только компоненты типа Сххуу, Схуху, Схуухи т. д. Однако мы уже показали, что если изменить все х на у и наоборот (или все z на x и т. д.), то для кубического кристалла мы должны получить то же самое число. Это означает, что остаются всего три различные ненулевые возможности:
Плотность же энергии для кубического кристалла выглядит так:
У изотропного, т. е. некристаллического, материала симметрия еще выше. Числа С должны быть теми же самыми при любом выборе осей координат. При этом, как оказывается, существует другая связь между коэффициентами С:
Cхххх=Cххуу+Cхуху (39.19)
Это можно усмотреть из следующих общих рассуждений. Тензор напряжений Sijдолжен быть связан с eijспособом, который совершенно не зависит от направления осей координат, т. е. он должен быть связан только с помощью скалярных величин. «Это очень просто»,— скажете вы. «Единственный способ получить Sijиз eij — умножить
(Первая константа обычно записывается как 2m; при этом коэффициенту равен модулю сдвига, определенному нами в предыдущей главе.) Постоянные (m, и l называются упругими постоянными Лямэ. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что
Таким образом, мы доказали, что уравнение (39.19) действительно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.
Коэффициенты С могут быть выражены через любые две из упругих постоянных, которые использовались ранее, например через модуль Юнга Y и отношение Пуассона s. На вашу долю оставляю показать, что
§ 3. Движения в упругом теле
Мы подчеркивали, что в упругом теле, находящемся в равновесии, внутренние напряжения распределяются так, чтобы энергия была минимальной. Посмотрим теперь, что происходит, если внутренние силы не уравновешены. Возьмем маленький кусочек материала внутри некоторой поверхности А (фиг. 39.5).
Фиг. 39.5. Маленький элемент объема V, ограниченный поверхностью А,
Если этот кусочек находится в равновесии, то полная действующая на него сила Fдолжна быть равна нулю. Можно считать, что эта сила состоит из двух частей, одна из которых обусловлена «внешними» силами, подобными гравитации, действующими на расстоянии на вещество нашего кусочка и приводящими к величине силы на единицу объема fвнешн. Полная же внешняя сила Fвнешн равна интегралу от fвнешн по всему объему кусочка:
В равновесии эти силы балансируются полной силой Fвнутр, действующей по поверхности А со стороны окружающего материала. Когда же этот кусочек не находится в равновесии, а движется, сумма внутренних и внешних сил будет равна произведению массы на ускорение. При этом мы получаем
где r—плотность материала, а а — его ускорение. Теперь мы можем скомбинировать уравнения (39.23) и (39.24) и написать
Нашу запись можно упростить, положив
Тогда уравнение (39.25) запишется в виде
Величина, названная нами Fвнутр, связана с напряжениями в материале. Тензор напряжений Sijбыл определен нами в гл. 31 таким образом, что x-компонента силы dF, действующей на элемент поверхности da с нормалью n, задается выражением