Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).

Это получается потому, что, согласно отноше­нию Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/2, для резинки те оно близко к этому числу.

§ 5. Продольный изгиб

Теперь

воспользуемся нашей теорией, чтобы понять, что про­исходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.

Фиг. 38.16. Продольно изогну­тая балка.

Здесь стержень, обычно прямой, удерживается в согнутом виде двумя проти­воположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.

Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент

в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:

Воспользовавшись выражением для момента (38.36), имеем

При малых отклонениях можно считать 1/R=-d2y/dx2(от­рицательный знак выбран потому, что кривизна направлена вниз). Отсюда

т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого про­дольно изогнутого стержня представляет синусоиду. «Длина волны» l. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна уд­военной длине неизогнутого стержня. Таким образом, получается кривая

Беря вторую производную, находим

Сравнивая это с (38.45), видим, что сила равна

Для малого продольного изгиба сила не зависит от перемеще­ния у!

Физически же получается вот что. Если сила F меньше опре­деляемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину p2YI/L2(часто назы­ваемую «силой Эйлера»), балка будет «гнуться». Если на вто­ром этаже здания разместить такой груз, что нагрузка на под­держивающие колонны

превысит силу Эйлера, то здание рух­нет. Другая область, где очень важны продольно изгибающие силы,— это космические ракеты. С одной стороны, ракета дол­жна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная на­грузка и полезная мощность двигателей были как можно больше.

Фактически превышение силы Эйлера вовсе не означает, что после этого балка полностью разрушится. Когда отклонение ста­новится большим, сила благодаря члену (dz/dx)2в уравнении (38.38), которым мы пренебрегли, будет на самом деле больше вычисленной. Чтобы найти силы при большом продольном изги­бании стержня, мы должны вернуться к точному уравнению (38.44), которое получалось до использования приближенной связи между R и y.

Уравнение (38.44) имеет довольно простые геометрические свойства. Решается оно немного сложнее, но зато гораздо интереснее. Вмес­то того чтобы описывать кривую через х и у, можно воспользовать­ся двумя новыми переменными:

S — расстоянием вдоль кривой и

q— наклоном касательной к кри­вой (фиг. 38.17.)

Фиг. 38.17. Координа­ты кривой продольно изогнутой балки S и q.

Тогда кривизна будет равна скорости изменения угла с расстоянием

Поэтому точное уравнение (38.44) можно записать в виде

После взятия производной этого уравнения по S и замены dy/dS на sinq получим

[Если углы q малы, то мы снова приходим к уравнению (38.45), стало быть здесь все в порядке.

Не знаю, можете ли вы еще удивляться, но уравнение (38.47) получилось в точности таким же, как и для колебаний маятника с большой амплитудой (разумеется, с заменой F/YI другой постоянной). Еще раньше, в гл. 9 (вып. 1), мы узнали, как нахо­дить решение такого уравнения численным методом. В ответе вы получите очаровательную кривую. На фиг. 38.18 показаны три кривые для разных значений постоянной F/YI.

* Кстати, точно такое же уравнение возникает и в других физических ситуациях: например, в мениске на поверхности жидкости, заключенной между двумя параллельными стенками, а поэтому можно воспользоваться тем же самым геометрическим рассмотрением.

* Решение его можно выразить также через особые функции, называе­мые «эллиптическими функциями Якоби», которые когда-то раз навсегда были вычислены и протабулированы.

* Это и есть момент инерции пластинки единичной плотности и с единичной площадью сечения

Глава 39

УПРУГИЕ МАТЕРИАЛЫ

§ 1. Тензор деформации

§ 2. Тензор упругости

§ З. Движения в упругом теле

§ 4. Неупругое поведение

Поделиться:
Популярные книги

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Попаданка 3

Ахминеева Нина
3. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 3

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Призыватель нулевого ранга. Том 3

Дубов Дмитрий
3. Эпоха Гардара
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Призыватель нулевого ранга. Том 3

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Чужбина

Седой Василий
2. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чужбина

Бестужев. Служба Государевой Безопасности. Книга четвертая

Измайлов Сергей
4. Граф Бестужев
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга четвертая

Локки 5. Потомок бога

Решетов Евгений Валерьевич
5. Локки
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Локки 5. Потомок бога

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4