Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
* При нашем нынешнем глубоком понимании мира нелегко ответить на вопрос—менее ли «материальна» энергия фотона, чем энергия электрона, ведь, как вы помните, все частицы ведут себя очень похоже. Единственное различие в том, что у фотона масса покоя равна нулю.
* Кое-кто может возразить, что все эти рассуждения неверны, потому что наши конечные состояния не обладают определенной четностью. В добавлении 2 в конце этой главы вы найдете другое доказательство, которое вас удовлетворит.
* Когда мы переводим х, у, z в -х, -у, -z, то можно подумать, что все векторы перевернутся. Это верно для полярных векторов, таких, как смещения и скорости, но не для аксиальных
Глава 17
АТОМ ВОДОРОДА И ПЕРИОДИЧЕСКАЯ ТАБЛИЦА
§ 1. Уравнение Шредингера для атома водорода
§ 2. Сферически симметричные решения
§ 3. Состояния с угловой зависимостью
§ 4. Общее решение для водорода
§ 5. Волновые функции водорода
§ 6. Периодическая таблица
§ 1. Уравнение Шредингера для атома водорода
Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.
Для полного описания атома водорода следовало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.
Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент количества движения постоянен.
В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть представлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке х, у, z в момент t через y(x, у, z, t). Согласно квантовой механике, скорость изменения этой амплитуды со временем дается гамильтоновым оператором, действующим на ту же функцию. Из гл. 14 мы знаем, что
где
Здесь m—масса
V=-e 2 /r.
Волновая функция y должна тогда удовлетворять уравнению
Мы хотим найти состояния с определенной энергией, поэтому попробуем поискать решения, которые бы имели вид
Тогда функция y(r) должна быть решением уравнения
где Е — некоторое постоянное число (энергия атома).
Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах.
Лапласиан в прямоугольных координатах определялся так:
Вместо этого мы хотим воспользоваться координатами r,q, j, изображенными на фиг. 17.1.
Фиг. 17.1. Сферические координаты r, q, j точки Р.
Они связаны с х, у, z формулами
х=rsinqcosj; у=rsinqsinj; z=rcosq.
Вас ждут довольно нудные алгебраические выкладки, но в конце концов вы должны будете прийти к тому, что для произвольной функции f(r) = f(r, q, j):
Итак, в полярных координатах уравнение, которому должна удовлетворять функция y(r, q, j), принимает вид
§ 2. Сферически симметричные решения
Попробуем сперва отыскать какую-нибудь функцию попроще, чтобы она удовлетворяла уравнению (17.7). Хотя волновая функция y в общем случае будет зависеть как от q и j, так и от r, можно все же поискать, не бывает ли такого особого случая, когда y не зависит от углов. Если волновая функция от углов не зависит, то при поворотах системы координат ни одна из амплитуд никак не будет меняться. Это означает, что все компоненты момента количества движения равны нулю. Такая функция y должна соответствовать состоянию с равным нулю полным моментом количества движения. (На самом деле, конечно, равен нулю только орбитальный момент количества движения, потому что остается еще спин электрона, но мы на эту часть момента не обращаем внимания.) Состояние с нулевым орбитальным моментом количества движения имеет особое название. Его называют «s-состоянием» (можете считать, что s от слова «сферически симметричный»).
Раз y не собирается зависеть от q и j, то в полном лапласиане останется только один первый член и (17.7) сильно упростится:
· Прежде чем заняться решением подобного уравнения, хорошо
; бы, изменив масштаб, убрать из него все лишние константы
вроде е2, m, h. От этого выкладки станут легче. Если сделать подстановки
то уравнение (17.8) обратится (после умножения на r) в