Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:

* При нашем нынешнем глубоком понимании мира нелегко ответить на вопрос—менее ли «материальна» энергия фотона, чем энергия элек­трона, ведь, как вы помните, все частицы ведут себя очень похоже. Един­ственное различие в том, что у фотона масса покоя равна нулю.

* Кое-кто может возразить, что все эти рассуждения неверны, по­тому что наши конечные состояния не обладают определенной четностью. В добавлении 2 в конце этой главы вы найдете другое доказательство, которое вас удовлетворит.

* Когда мы переводим х, у, z в -х, -у, -z, то можно подумать, что все векторы перевернутся. Это верно для полярных векторов, таких, как смещения и скорости, но не для аксиальных

векторов наподобие момента количества движения, да и любых векторов, представляющих собой век­торное произведение двух полярных векторов. Компоненты аксиальных векторов при инверсии не меняются.

Глава 17

АТОМ ВОДОРОДА И ПЕРИОДИЧЕСКАЯ ТАБЛИЦА

§ 1. Уравнение Шредингера для атома водорода

§ 2. Сферически симметричные решения

§ 3. Состояния с угловой зависимостью

§ 4. Общее решение для водорода

§ 5. Волновые функции водорода

§ 6. Периодическая таблица

§ 1. Уравнение Шредингера для атома водорода

Самым замечательным успехом в истории квантовой механики было объяснение всех дета­лей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе кванто­вой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объ­яснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объясне­нии таинственных свойств химических элемен­тов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в простран­стве, следуя тем представлениям, которые были развиты в гл. 14.

Для полного описания атома водорода сле­довало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой меха­нике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.

Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивист­ской механики. Это потребует внесения неболь­ших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравне­нием Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты по­являются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия элек­трона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдви­нуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообра­зим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электро­на, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» момен­том количества движения) тоже не будет меняться. В очень хоро­шем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент ко­личества движения постоянен.

В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть пред­ставлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке х, у, z в момент t через y(x, у, z, t). Со­гласно квантовой механике, скорость изменения этой ампли­туды со временем дается гамильтоновым оператором, действую­щим на ту же функцию. Из гл. 14 мы знаем, что

где

Здесь m—масса

электрона, а V (r)— потенциальная энергия электрона в лектростатическом поле протона. Считая на больших удалениях от протона V=0, можно написать

V=-e 2 /r.

Волновая функция y должна тогда удовлетворять уравнению

Мы хотим найти состояния с определенной энергией, по­этому попробуем поискать решения, которые бы имели вид

Тогда функция y(r) должна быть решением уравнения

где Е — некоторое постоянное число (энергия атома).

Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах.

Лапласиан в прямоугольных координатах определялся так:

Вместо этого мы хотим воспользоваться координатами r,q, j, изображенными на фиг. 17.1.

Фиг. 17.1. Сферические ко­ординаты r, q, j точки Р.

Они связаны с х, у, z форму­лами

х=rsinqcosj; у=rsinqsinj; z=rcosq.

Вас ждут довольно нудные алгебраические выкладки, но в конце концов вы должны будете прийти к тому, что для произвольной функции f(r) = f(r, q, j):

Итак, в полярных координатах уравнение, которому должна удовлетворять функция y(r, q, j), принимает вид

§ 2. Сферически симметричные решения

Попробуем сперва отыскать какую-нибудь функцию попроще, чтобы она удовлетворяла уравнению (17.7). Хотя волновая функция y в общем случае будет зависеть как от q и j, так и от r, можно все же поискать, не бывает ли такого особого случая, когда y не зависит от углов. Если волновая функция от углов не зависит, то при поворотах системы координат ни одна из амплитуд никак не будет меняться. Это означает, что все ком­поненты момента количества движения равны нулю. Такая функция y должна соответствовать состоянию с равным нулю полным моментом количества движения. (На самом деле, ко­нечно, равен нулю только орбитальный момент количества дви­жения, потому что остается еще спин электрона, но мы на эту часть момента не обращаем внимания.) Состояние с нулевым орбитальным моментом количества движения имеет особое на­звание. Его называют «s-состоянием» (можете считать, что s от слова «сферически симметричный»).

Раз y не собирается зависеть от q и j, то в полном лапласиане останется только один первый член и (17.7) сильно упростится:

· Прежде чем заняться решением подобного уравнения, хорошо

; бы, изменив масштаб, убрать из него все лишние константы

вроде е2, m, h. От этого выкладки станут легче. Если сделать подстановки

то уравнение (17.8) обратится (после умножения на r) в

Поделиться:
Популярные книги

Газлайтер. Том 18

Володин Григорий Григорьевич
18. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 18

Секретарь лорда Демона

Лунёва Мария
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Секретарь лорда Демона

Жатва душ. Остров мертвых

Сугралинов Данияр
Фантастика:
боевая фантастика
рпг
5.20
рейтинг книги
Жатва душ. Остров мертвых

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Найденыш

Шмаков Алексей Семенович
2. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Найденыш

Служанка. Второй шанс для дракона

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Служанка. Второй шанс для дракона

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Имперский Курьер. Том 2

Бо Вова
2. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 2

Громовая поступь. Трилогия

Мазуров Дмитрий
Громовая поступь
Фантастика:
фэнтези
рпг
4.50
рейтинг книги
Громовая поступь. Трилогия

Наследница долины Рейн

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наследница долины Рейн

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

Ищу жену с прицепом

Рам Янка
2. Спасатели
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Ищу жену с прицепом