Чтение онлайн

на главную - закладки

Жанры

Физика пространства - времени
Шрифт:

Три принципа, на которых основано преобразование Лоренца

Вывод преобразования Лоренца основывается на трех принципах, которые мы уже можем сформулировать:

1) Коэффициенты преобразования не должны зависеть от того, какое событие рассматривается («ковариантность преобразования»).

2) Выбор коэффициентов преобразования должен соответствовать тому, что точка, фиксированная в системе отсчета ракеты, движется в лабораторной системе отсчета со скоростью r в положительном направлении оси x.

3) Коэффициенты преобразования должны быть такими, чтобы любой интервал имел одно и то же значение в лабораторной

системе и в системе отсчета ракеты.

Эти три принципа легко применить к случаю распада -мезона. В лабораторной системе отсчета это событие имеет координаты (x,t) относительно события — рождения мезона, и эти координаты должны быть выражены через скорость r системы отсчета ракеты, в которой -мезон покоится. Эту скорость непосредственно даёт отношение координат x и t,

x

t

=

r

,

так что

x

=

r

t

,

или

x^2

=

r

^2

·

t^2

.

(17)

Первый этап вывода преобразования Лоренца

Временноподобный интервал, образованный x и t, определяется временем жизни -мезона в системе отсчёта ракеты (где мезон покоится в точке x'=0):

t^2-x^2

=

t'^2-x'^2

=

t'^2-0

=

^2

.

Подставим в эту формулу r^2t^2 вместо x^2 на основании уравнения (17). Получим

t^2

r

^2t^2

=

t'^2

=

^2

,

или

t^2

=

t^2

1-r^2

=

^2

1-r^2

,

или

t

=

t'

1-r^2

=

1-r^2

.

(Численный пример: положим r=^1^2/ скорости света; тогда 1-r^2=1-^1/=^2/ и (1-^2)^1/^2=^1^3/=2,6. Следовательно, время жизни -мезона, измеренное в лаборатории, в 2,6 раза длиннее «собственного времени жизни», т.е. оно в 2,6 раза длиннее, чем время жизни, измеренное в системе отсчёта, связанной с самим мезоном). Расстояние, пройденное -мезоном, равно времени движения, умноженному на скорость, так что

x

=

r

t

=

rt'

1-r^2

.

Решение задачи о -мезоне

Этим расчётом завершается решение поставленной задачи (найти координаты мировой точки распада -мезона относительно

мировой точки его рождения в лабораторной системе координат).

Задача о -мезоне служила введением к общей задаче — найти координаты данного события в лабораторной системе, если заданы его координаты в системе ракеты. Если мы покажем, что эта задача равнозначна выводу формул преобразования Лоренца, значит, мы пришли к методу вывода этого преобразования, исходя из простейших предположений. На самом деле, мы уже нашли два коэффициента из четырёх в формулах преобразования Лоренца:

t

=

r

t

=

t'

1-r^2

+

Ax'

,

x

=

r

t

=

rt'

1-r^2

+

Bx'

.

Что касается остальных двух коэффициентов, временно обозначенных через A и B, то о них мы ничего не узнали просто потому, что -мезон всё время покоился в точке x'=0 в системе ракеты. Благодаря этому коэффициенты A и B могли иметь любые конечные значения при одном и том же решении

Конечный этап вывода преобразования Лоренца

задачи о мезоне. Чтобы найти значения этих коэффициентов, мы перейдём от специального случая (события — распада E) к более общему случаю — событию, происходящему в точке с произвольными координатами x' и t'. Мы вновь потребуем, чтобы величина интервала была одинаковой в лабораторной системе и в системе отсчёта ракеты. Другими словами, потребуем выполнения равенства

t^2-x^2

=

t'^2-x'^2

,

или

t'

1-r^2

+

Ax'

^2

rt'

1-r^2

+

Bx'

^2

=

t'^2-x'^2

,

или

t'^2

+

2(A-rB)x't'

1-r^2

+

(A^2-B^2)

x'^2

=

t'^2

x'^2

.

(18)

Это равенство не может выполняться для всевозможных t' и x', если только коэффициенты A и B не выбраны вполне определённым образом. Во-первых, эти коэффициенты должны быть такими, чтобы в левой части равенства (18) обратился в нуль множитель при x't' (так как в правой части подобного члена нет). Тогда

A

=

r

B

.

Во-вторых, множители при (-x'^2) в левой и правой частях равенства (18) должны совпадать. Поэтому

B^2

A^2

=

1.

Мы получили два уравнения для двух неизвестных A и B; решая их, найдём

A

=

r

1-r^2

и

B

=

1

1-r^2

Поделиться:
Популярные книги

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Сколько стоит любовь

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.22
рейтинг книги
Сколько стоит любовь

Невольница князя

Мун Эми
Любовные романы:
эро литература
5.00
рейтинг книги
Невольница князя

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Князь

Шмаков Алексей Семенович
5. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
5.00
рейтинг книги
Князь

Старое поместье Батлера

Лин Айлин
Фантастика:
историческое фэнтези
5.00
рейтинг книги
Старое поместье Батлера

Чужбина

Седой Василий
2. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чужбина

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Развод с миллиардером

Вильде Арина
1. Золушка и миллиардер
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Развод с миллиардером

Лучший из худших-2

Дашко Дмитрий Николаевич
2. Лучший из худших
Фантастика:
фэнтези
5.00
рейтинг книги
Лучший из худших-2