Чтение онлайн

на главную - закладки

Жанры

Физика пространства - времени
Шрифт:

^2)^1

/

^2

x'

+

r

(1-

r

^2)^1

/

^2

t'

,

t

=

r

(1-

r

^2)^1

/

^2

x'

+

(1-

r

^2)^1

/

^2

t'

.

Как станет выглядеть эта пара уравнений, если мы выразим в ней скорость r через «улучшенную» характеристику движения r? Ответ таков. Вспомним, что скорость

и параметр скорости связаны между собой соотношением

r

=

th 

r

.

Отметим, что коэффициенты в формулах преобразования Лоренца зависят от r и тем самым от r. Эти коэффициенты равны

(1-

r

^2)^1

/

^2

=

(1-th^2

r

)^1

/

^2

(30)

и

r

(1-

r

^2)^1

/

^2

=

th 

r

(1-th^2

r

)^1

/

^2

.

(31)

Полученные выражения на первый взгляд довольно сложны. Тем не менее они вполне определённы. Мы знаем, как найти величину th r для любого заданного значения r (см. рис. 31 и сопровождающие его рассуждения). Знание величины th r позволяет нам вычислить выражения (30) и (31) с любой желаемой степенью точности для любого наперёд заданного значения параметра скорости. Эти две функции r настолько важны, что каждая из них получила своё собственное название в теории гиперболических функций. Если мы примем стандартные названия для этих функций, то это никоим образом не повлияет на наши возможности определять величины этих функций в любом интересующем нас случае без использования каких-либо руководств или справочников, своими собственными силами. Поэтому мы примем и будем в дальнейшем употреблять следующие стандартные названия:

(1-th^2

r

)^1

/

^2

=

ch 

r

=

=

(Косинус гиперболический

r

),

th 

r

(1-th^2

r

)^1

/

^2

=

sh 

r

=

=

(Синус гиперболический

r

),

Это названия, и не более чем названия! Используя их, мы найдём, что формулы преобразования Лоренца принимают вид

x

=

x'

ch 

r

+

t'

sh 

r

,

t

=

x'

sh 

r

+

t'

ch 

r

.

(32)

Преобразование Лоренца, выраженное через параметр скорости

Отсюда мы заключаем, что связь между старыми и новыми координатами приобретает наиболее простой вид, когда коэффициенты преобразования выражаются как гиперболические функции параметра относительного движения r систем отсчёта. Более того, будучи выражены с помощью гиперболических синуса и косинуса, формулы преобразования

Лоренца ещё больше, чем ранее, напоминают стандартный тригонометрический вид (29) формул преобразования поворота.

Как можно лучше уяснить себе и прочувствовать свойства фигурирующих в преобразовании Лоренца гиперболических функций? Два самых интересных и существенных их свойства вытекают непосредственно из определений (30) и (31). Во-первых, отношение

sh r

cs r

=

th 

r

(33)

совершенно аналогично соответствующему отношению для тригонометрических функций. Во-вторых, разность квадратов двух гиперболических функций равна

ch^2

r

sh^2

r

=

1

1-th^2r

th^2r

1-th^2r

=

=

1-th^2r

1-th^2r

=

1.

(34)

Сопоставьте эту формулу с аналогичным соотношением для тригонометрических функций:

cos^2(угол)

+

sin^2(угол)

=

1.

(35)

Сравнение тригонометрических и гиперболических функций1)

1 Авторы здесь и в других местах вместо термина «тригонометрический» говорят «круговой». Действительно, тригонометрические функции, как это видно из дальнейшего обсуждения, тесно связаны с простейшей кривой второго порядка — окружностью, тогда как гиперболические функции связаны со свойствами другой кривой второго порядка, гиперболы. Поэтому между ними много общего. Однако в переводе мы пользуемся более принятым в отечественной литературе термином «тригонометрический».— Прим. перев.

Уравнения (34) и (35) допускают простую геометрическую интерпретацию. Отложим на рис. 32 по вертикальной оси функцию «косинус», а по горизонтальной оси — функцию «синус» (одного и того же аргумента). Уравнение (35) тогда описывает окружность единичного радиуса, и поэтому тригонометрические функции можно называть «круговыми». Напротив, уравнение (34) описывает при аналогичном построении гиперболу (рис. 33), и поэтому мы говорим о «гиперболических функциях». Знак «плюс» в соотношении cos^2+sin^2=1 происходит от того, что для получения квадрата длины вектора нужно сложить его x- и y- компоненты, возведённые в квадрат. Почему же в соотношении ch^2-sh^2=1 фигурирует знак «минус»? Потому, что квадрат пространственно-временного интервала определяется как разность квадратов удалённостей событий во времени и в пространстве.

Рис. 32. Тригонометрические функции: график связи между косинусом и синусом — окружность. Пример: (3/5)^2+(4/5)^2=1

Рис. 33. Гиперболические функции: график связи между гиперболическими косинусом и синусом — гипербола. Пример: (5/3)^2-(4/3)^2=1

Проверка того факта, что преобразование поворота в эвклидовой геометрии оставляет неизменной длину

Разные знаки в соотношениях cos^2+sin^2=1 и ch^2-sh^2=1 связаны с различием между понятиями длины в эвклидовой геометрии и интервала в лоренцевой геометрии. Рассмотрим по очереди более подробно и ту и другую геометрии с этой точки зрения. Удостоверимся вновь в том факте, что в эвклидовой геометрии ковариантное преобразование координат (29), выраженное теперь не через величину наклона, а через тригонометрические функции, обеспечивает выполнение инвариантности длины. Для этого вычислим в штрихованных координатах квадрат длины:

Поделиться:
Популярные книги

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Сколько стоит любовь

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.22
рейтинг книги
Сколько стоит любовь

Невольница князя

Мун Эми
Любовные романы:
эро литература
5.00
рейтинг книги
Невольница князя

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Князь

Шмаков Алексей Семенович
5. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
5.00
рейтинг книги
Князь

Старое поместье Батлера

Лин Айлин
Фантастика:
историческое фэнтези
5.00
рейтинг книги
Старое поместье Батлера

Чужбина

Седой Василий
2. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чужбина

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Развод с миллиардером

Вильде Арина
1. Золушка и миллиардер
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Развод с миллиардером

Лучший из худших-2

Дашко Дмитрий Николаевич
2. Лучший из худших
Фантастика:
фэнтези
5.00
рейтинг книги
Лучший из худших-2