ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда
Шрифт:
Гильберт, разумеется, полностью отдавал себе отчет в этой дилемме; однако он надеялся, что доказательство полноты и непротиворечивости удастся найти с помощью только небольшой группы так называемых «финитных» методов рассуждения, признаваемых большинством математиков. В этом смысле Гильберт надеялся, что математикам все же удастся «поднять самих себя на воздух за шнурки ботинок», доказав правильность всех математических методов путем использования лишь нескольких из них. Эта цель может показаться слишком эзотерической, однако именно она занимала умы многих великих математиков в первые тридцать лет двадцатого столетия.
Однако в тридцать первом году Гёдель опубликовал работу, подорвавшую основы Гильбертовой программы. Эта работа показала не только наличие незаполнимых «дыр» в аксиоматической системе, предложенной Расселом и Уайтхедом, но и то, что ни одна аксиоматическая система не может породить все истинные высказывания
Последний иронический штрих для доказательства теоремы Гёделя о неполноте потребовалось внедрить парадокс Эпименида прямо в сердце «Оснований математики» — бастиона, считавшегося недоступным для Странных Петель. Хотя Гёделева Странная Петля и не разрушила «Оснований математики», она сделала их гораздо менее интересными для математиков, доказав иллюзорность цели, первоначально поставленной Расселом и Уайтхедом.
Как раз когда работа Гёделя вышла в свет, мир был накануне создания электронных цифровых компьютеров. Идея механических счетных машин носилась в воздухе уже давно В семнадцатом веке Паскаль и Лейбниц разработали машины для выполнения установленных операций сложения и умножения. К сожалению, эти машины не имели памяти и не были, в современном понимании этого слова, программируемыми
Первым человеком, понявшим, какой огромный счетный потенциал заключают в себе машины, был лондонец Чарльз Баббадж (Charles Babbage, 1792- 1871), фигура, словно сошедшая со страниц «Пиквикского клуба». При жизни он был известен более всего тем, что вел энергичные кампании по очистке Лондона от «нарушителей спокойствия», в первую очередь, шарманщиков.
Эти паразиты любили подразнить Баббаджа и исполняли для него «серенады» в любой час дня и ночи, а он, в ярости, гнал их вдоль по улице. Сегодня мы признаем, что Баббадж был человеком, обогнавшим свое время лет на сто он не только изобрел основные принципы современных компьютеров, но и был первым борцом за охрану окружающей среды от шума.
Его первое изобретение, «разностная машина», могла вычислять математические таблицы многих типов по «методу разностей». Однако, прежде чем была создана первая модель «РМ», Баббаджем завладела идея гораздо более революционная его «аналитическая машина». Довольно нескромно, Баббадж писал: «Я пришел к этой мысли таким сложным и запутанным путем, какой, возможно, впервые прошел человеческий ум». [4] В отличие от созданных ранее машин, «AM» должна была иметь «склад» (память) и «фабрику» (считающее и принимающее решения устройство). Оба устройства должны были быть построены из тысяч цилиндров, сцепленных самым сложным и причудливым образом. Баббадж представлял себе числа, влетающие и вылетающие из «фабрики» под контролем некоторой программы, содержащейся в перфорированных картах — на эту идею его натолкнул ткацкий станок Жаккара, изготовлявший при помощи подобных карт удивительно сложные узоры. Подруга Баббаджа графиня Ада Лавлейс, дочь Байрона, женщина незаурядного таланта и горькой судьбы, поэтично прокомментировала: «Аналитическая машина ткет алгебраические узоры, наподобие того, как станок Жаккара ткет узоры из цветов и листьев». К сожалению, использование графиней настоящего времени вводит читателя в заблуждение: «AM» так никогда и не была построена, и Баббадж умер горько разочаровавшимся человеком.
4
Charles Babbage «Passages from the Life of a Philosopher» стр 145 6
Леди Лавлейс не менее, чем Баббадж, отдавала себе отчет в том, что, пытаясь создать аналитические машины, человечество флиртовало с искусственным разумом — в особенности, если эти машины способны «укусить себя за хвост» (так Баббадж описывал Странную Петлю, получавшуюся, когда его машина «залезала внутрь себя» и меняла заложенную в нее программу). В 1842 году она написала в своих мемуарах, [5] что аналитическая машина «может воздействовать не только на цифры, но и на другие вещи». В то время, как Баббадж мечтал о создании шахматного или «крестико-ноликового» автомата, леди Лавлейс предположила, что если записать на цилиндры машины тона и гармонии, то она могла бы «создавать искусно сделанные научные музыкальные композиции любой сложности и длины». Впрочем, там же она объясняет: «Аналитическая машина не претендует на создание чего-то нового, она может делать только то, что мы умеем ей приказать». Верно поняв, какая мощь
5
Lady A. A. Lovelace «Notes upon the Memoir „Sketch of the Analytical Engine Invented by Charles Babbage“» записано L. F. Menabrea (Женева 1842) и воспроизведено в книге E. Morrison «Charles Babbage and His Calculating Engines» стр. 248 9 284
В нашем веке пришло время для компьютеров, превзошедших самые смелые мечты Паскаля, Лейбница, Баббаджа или леди Лавлейс. В 1930-х и 1940-х годах были разработаны и построены первые «блестящие электронные головы». Это послужило катализатором к соединению трех ранее совершенно различных областей науки, теории аксиоматических рассуждений, изучения механических вычислений и исследований по психологии человеческого разума. В те же годы гигантскими скачками двигалась вперед теория компьютеров. Эта теория была тесно связана с математикой. Фактически, теорема Гёделя имеет параллель в теории вычислений: Алан Тюринг открыл существование неизбежных «дыр» в возможностях даже самого могучего компьютера. Словно в насмешку, как раз когда делались эти довольно мрачные прогнозы, строились новые компьютеры, чьи возможности росли на глазах, далеко превосходя самые смелые предсказания их создателей. Баббадж, сказавший однажды, что он с радостью отдал бы остаток жизни за возможность вернуться на три дня лет через пятьсот, чтобы получить возможность ознакомиться с наукой будущего, возможно, потерял бы дар речи от удивления уже через сто лет после своей смерти, пораженный как новыми машинами, так и их неожиданными ограничениями.
В начале 1950-х годов казалось, что до механического разума — рукой подать: однако за каждой преодоленной вершиной вставала новая, препятствуя созданию по-настоящему думающей машины. Возможно ли, что это упорное отдаление цели имело глубинные причины?
Никто не знает, где пролегает граница между разумным и не-разумным поведением; в самом деле, возможно, что само предположение о существовании четкой границы звучит глупо. Однако мы с уверенностью можем перечислить основные критерии разума:
гибко реагировать на различные ситуации;
извлекать преимущество из благоприятного стечения обстоятельств;
толковать двусмысленные или противоречивые сообщения;
оценивать различные элементы данной ситуации по степени их важности;
находить сходство между ситуациями, несмотря на возможные различия;
находить разницу между ситуациями, несмотря на возможное сходство;
создавать новые понятия, по-новому соединяя старые;
выдвигать новые идеи.
Здесь мы сталкиваемся с кажущимся парадоксом. Компьютеры, по определению, являются самыми негибкими, безвольными и послушными приказам существами. Несмотря на свою быстроту, они, тем не менее, сама бессознательность. Как же, в таком случае, можно запрограммировать разумное поведение? Не является ли уже само это предположение кричащим противоречием? Одна из основных идей этой книги — показать, что это вовсе не противоречие. Одна из основных целей этой книги — побудить каждого читателя встретиться с кажущимся парадоксом во всеоружии, попробовать его на вкус, вывернуть его наизнанку, разобрать его на части, пошлепать в нем, как ребенок в луже, чтобы в результате читатель смог взглянуть по-новому на кажущуюся неприступной пропасть между формальным и неформальным, одушевленным и неодушевленным, гибким и негибким
Это и составляет предмет исследований науки об искусственном интеллекте (ИИ). Работа специалистов по ИИ кажется странной и удивительной именно потому, что они разрабатывают строго формальные правила, говорящие негибким машинам, как стать гибкими
Что же это за правила такие, могущие описать всю сложность поведения разумных существ? Безусловно, это должны быть правила самых разных уровней: «простые» правила, «метаправила» для модификации «простых», «метаметаправила» для модификации метаправил, и так далее. Гибкость нашего разума зависит именно от огромного количества правил и сложности их иерархии. Некоторые ситуации вызывают стереотипные реакции, для которых годятся «простые» правила. Другие ситуации представляют собой комбинации из стереотипных ситуаций; тут нужны правила, говорящие, какие из «простых» правил приложимы к данной ситуации. Некоторые ситуации вообще не поддаются классификации — следовательно, требуются правила для изобретения новых правил… ит. д., и т. п. Без сомнения, Странные Петли, правила, изменяющие сами себя, находятся в самом сердце разума. Иногда сложность нашего разума кажется нам настолько поразительной, что у нас опускаются руки перед задачей понять и описать его; тогда нам кажется, что никакие, даже самые замысловатые иерархические правила не способны управлять поведением разумных существ.