Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В начале 1980-х годов две группы ученых, работающие в Филадельфии и в Кембридже, одновременно сделали уди­вительное открытие. Они пытались получить мышь только от одного родителя. Поскольку в те времена клонировать мышь из соматических клеток тела было еще невозможно (ситуация быстро стала меняться после успешного опыта с овцой Долли), группа исследователей в Филадельфии просто слила вместе два проядрышка оплодотворенных яйцеклеток. Когда сперматозоид проникает в яйцеклетку, его ядро с хромосомами еще некоторое время соседству­ет с ядром яйцеклетки, не сливаясь с ним. Такие ядра вну­три яйцеклетки называются проядрышками. Ловкие ученые с помощью пипеток извлекают одно из проядрышек и заме­няют его другим. Можно слить проядрышки из двух яйце­клеток или из двух сперматозоидов, в результате чего полу­чается яйцеклетка с полным набором хромосом, но только от отца или только от матери. В Кембридже с этой целью использовали другой

подход, но результат получился тот же. И в обоих случаях эксперимент закончился неудачей. Эмбрионы не смогли нормально развиваться и вскоре по­гибли в матке.

В случае с материнскими хромосомами эмбрион сна­чала развивался нормально, но не образовывал плаценту, без которой быстро погибал. Напротив, когда в яйцеклет­ке объединили только отцовские хромосомы, получалась большая плацента и покровы эмбриона, но самого эмбрио­на внутри не было. Вместо эмбриона разрасталась дезорга­низованная масса клеток, в которой нельзя было различить никаких частей тела (McGrath J., Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and pater­nal genomes. Cell 37: 179-183; Barton S. C., Surami M. A. H., Norris M. L. 1984. Role of paternal and maternal genomes in mouse development. Nature ?>\V. 374-376).

Результаты экспериментов позволили сделать неожи­данный вывод: отцовские гены ответственны за развитие плаценты, а материнские гены — за дифференциацию кле­ток эмбриона в органы и части тела. Почему появилось та­кое распределение труда между отцовскими и матерински­ми генами? Пятью годами позже Дэвид Хэйг (David Haig) из Оксфорда утверждал, что знает ответ на этот вопрос. Он просто взглянул на плаценту не как на материнский орган для вскармливания своего чада, а как на орудие па­разитизма, которое использует эмбрион для вытягивания питательных веществ из крови матери и подавления вся­кого противодействия с ее стороны. Плацента буквально врастает в материнскую плоть, заставляет расширяться кровеносные сосуды и выделяет гормоны, которые повы­шают кровяное давление и содержание сахара в крови ма­тери. Материнский организм в ответ повышает уровень ин­сулина в крови, чтобы как-то противодействовать инвазии. Интересно, что в тех случаях, когда плацента не выделяет активные гормоны, отношения эмбриона с материнским организмом складываются более дружелюбно. Другими словами, хотя у матери и эмбриона единая цель, они часто не могут добиться согласия относительно способов ее до­стижения и того, какие ресурсы мать должна предоставить своему ребенку. Эти споры продолжаются и после рожде­ния ребенка, во время отлучения от груди, а впрочем, и все остальные годы.

Геном эмбриона наполовину состоит из материнских ге­нов, что может привести к конфликту интересов: должны ли материнские гены больше заботиться об эмбрионе или о самой матери. Отцовским генам эмбриона такой конфликт не грозит. Материнский организм их интересует только с точки зрения предоставления пищи и укрытия на время развития эмбриона. В терминах человеческого общества мужские гены просто не доверяют женским генам такой ответственный момент, как создание плаценты, и берут этот процесс под свой персональный контроль. Именно поэтому у эмбрионов, которые образовались в результате слияния двух проядрышек сперматозоидов, так хорошо по­лучалась плацента.

Исходя из своих чисто теоретических гипотез, Хэйг сделал практические выводы, которые очень скоро под­твердились экспериментально. Так, он предположил, что у яйцекладущих животных не должно быть импринтинга материнских и отцовских генов, поскольку внутри яйца эм­бриону бессмысленно спорить с организмом матери о раз­мерах желтка, выделенного для его пропитания. Эмбрион оказывается вне организма матери еще до того, как получа­ет возможность как-либо манипулировать ее организмом. Даже у сумчатых животных, таких как кенгуру, у которых роль плаценты выполняет складка кожи на животе, по ги­потезе Хэйга не должно быть импринтинга генов. Сейчас уже известно, что Хэйг был прав. Импринтинг характерен только для плацентарных млекопитающих и для покрыто­семенных растений (Haig D., Westoby М. 1989. Parent-spe­cific gene expression and the triploid endosperm. American Naturalist 134: 147-155).

Кроме того, вскоре Хэйг с триумфом отметил, что еще один случай импринтинга был зафиксирован для пары ге­нов в геноме мыши именно там, где он предсказывал: в си­стеме регуляции скорости роста эмбриона. Речь идет о гене, кодирующем небольшой белок IGF2, напоминающий инсулин. Этот белок постоянно обнаруживается в тканях эмбриона, но отсутствует у взрослых организмов. В эм­брионе есть другой белок, IGF2R, который прикрепляет­ся к белку IGF2, хотя смысл этого взаимодействия пока не ясен. Возможно, его задача состоит в удалении белка IGF2 из организма. А теперь внимание. Оба гена, IGF2

и IGF^R, диверсифицированы по происхождению: первый считы- вается только с отцовской хромосомы, а второй — только с материнской. Видимо, здесь мы наблюдаем пример не­большого противостояния между родительскими генами: отцовский ген пытается ускорить развитие эмбриона, а материнский — притормаживает его (Haig D., Graham С. 1991. Genomic imprinting and the strange case of the insulin­like growth factor II receptor. Cell 64: 1045-1046).

По теории Хэйга половой импринтинг как раз дол­жен проходить по таким конкурирующим парам генов. Подобная ситуация должна проявляться и в геноме челове­ка. Человеческий ген IGF на хромосоме 11 также считыва- ется только с отцовской хромосомы. Бывают случаи, когда на одной хромосоме оказывается две копии этого гена, что вызывает синдром Беквита-Видемана. В этом случае серд­це и печень вырастают слишком большими. Кроме того, развитие эмбриона часто сопровождается появлением опухолей. Для гена 1GFJI у человека импринтинг не обна­ружен, но, похоже, эту роль взял на себя другой диверсифи­цированный ген, Н19.

Если два диверсифицированных гена только то и дела­ют, что воюют друг с другом, наверное, их можно было бы отключить без вреда для организма? Как ни странно звучит эта гипотеза, но такое возможно. Разрушение обоих генов не мешает развитию нормального эмбриона мыши. Мы воз­вращаемся к теме, которую уже рассматривали на примере хромосомы 8, к вопросу об эгоистичных генах, работаю­щих исключительно ради самих себя и совершенно не за­ботящихся о процветании организма и популяции. Многие ученые полагают, что в половом импринтинге генов нет никакого рационального зерна с точки зрения пользы для организма. Это лишь еще одно подтверждение теории эго­истичных генов и полового антагонизма.

Как только мы начинаем мыслить категориями эгои­стичных генов, в голову приходят неожиданные идеи и гипотезы. Рассмотрим одну из них. Эмбрионы в одной утробе, управляемые отцовскими генами, могут вести себя по-разному в зависимости от того, какой набор генов им до­стался. Эти конкурентные различия будут особенно сильно проявляться в тех случаях, когда яйцеклетки были оплодот­ворены семенем разных отцов, что в природе встречается довольно часто. Конкуренция между эмбрионами может вести к отбору более эгоистичных отцовских генов. От по­добных рассуждений очень просто перейти к практике и экспериментально проверить нашу догадку. Хорошим объ­ектом исследований являются мыши. Разные виды мышей существенно отличаются своим поведением. Так, для самок вида Peromyscus maniculatus характерны беспорядочные поло­вые связи, поэтому в каждом помете можно найти мышат от разных отцов. В другом виде, Peromyscus polionatus, самки моногамны и сохраняют верность своему единственному из­браннику. Все мышата в помете происходят от одного отца.

Что произойдет, если мы скрестим между собой мышей этих двух видов, P. maniculatus и P. polionatus? Внешний вид потомства будет зависеть от того, к каким видам относились самец и самка. Если взять самца P. maniculatus (с беспоря­дочными половыми связями), то у самки P. polionatus родят­ся мышата невероятно крупного размера. Если отцом будет моногамный P. polionatus, то у самки P. maniculatus мышата родятся очень мелкими. Вы уловили суть эксперимента? Отцовские гены вида P. maniculatus развивались в условиях жесткой конкурентной борьбы в утробе за материнские ре­сурсы с другими эмбрионами, некоторые из которых даже не были их родственниками. Материнские гены P. maniculatus, в свою очередь, развивались таким образом, чтобы позво­лить матери урезонить свои слишком активные эмбрионы. Отцовские и материнские гены вида P. polionatus эволюцио­нировали в гораздо менее агрессивных условиях, поэтому у самки данного вида не было средств, чтобы противосто­ять отцовским генам вида P. maniculatus, а отцовские гены P. polionatus были недостаточно активными, чтобы эмбрио­ны могли взять свое в утробе самки P. maniculatus. Это вело к тому, что в одном эксперименте мышата оказались слиш­ком большими, а в другом — недоразвитыми. Яркая иллю­страция к теме импринтинга генов (Dawson W. 1965. Fertility and size inheritance in a Peromyscus species cross. Evolution 19: 44-55; Mestel R. 1998. The genetic battle of the sexes. Natural History 107: 44-49).

Поделиться:
Популярные книги

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Волчья воля, или Выбор наследника короны

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Волчья воля, или Выбор наследника короны

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Миротворец

Астахов Евгений Евгеньевич
12. Сопряжение
Фантастика:
эпическая фантастика
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Миротворец

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1